Science is losing its ability to self-correct

With the explosion in the number of researchers, the increasing rush to publication and the corresponding explosion in traditional and on-line journals as avenues of publication, The Economist carries an interesting article making the point that the assumption that science is self-correcting is under extreme pressure. “There is no cost to getting things wrong,” says Brian Nosek, a psychologist at the University of Virginia who has taken an interest in his discipline’s persistent errors. “The cost is not getting them published.”

The field of psychology and especially social psychology has been much in the news with the dangers of “priming”.

“I SEE a train wreck looming,” warned Daniel Kahneman, an eminent psychologist, in an open letter last year. The premonition concerned research on a phenomenon known as “priming”. Priming studies suggest that decisions can be influenced by apparently irrelevant actions or events that took place just before the cusp of choice. They have been a boom area in psychology over the past decade, and some of their insights have already made it out of the lab and into the toolkits of policy wonks keen on “nudging” the populace.

Dr Kahneman and a growing number of his colleagues fear that a lot of this priming research is poorly founded. Over the past few years various researchers have made systematic attempts to replicate some of the more widely cited priming experiments. Many of these replications have failed. In April, for instance, a paper in PLoS ONE, a journal, reported that nine separate experiments had not managed to reproduce the results of a famous study from 1998 purporting to show that thinking about a professor before taking an intelligence test leads to a higher score than imagining a football hooligan.

It is not just “soft” fields which have problems. It is apparent that in medicine a large number of published results cannot be replicated

… irreproducibility is much more widespread. A few years ago scientists at Amgen, an American drug company, tried to replicate 53 studies that they considered landmarks in the basic science of cancer, often co-operating closely with the original researchers to ensure that their experimental technique matched the one used first time round. According to a piece they wrote last year in Nature, a leading scientific journal, they were able to reproduce the original results in just six. Months earlier Florian Prinz and his colleagues at Bayer HealthCare, a German pharmaceutical giant, reported in Nature Reviews Drug Discovery, a sister journal, that they had successfully reproduced the published results in just a quarter of 67 seminal studies.

The governments of the OECD, a club of mostly rich countries, spent $59 billion on biomedical research in 2012, nearly double the figure in 2000. One of the justifications for this is that basic-science results provided by governments form the basis for private drug-development work. If companies cannot rely on academic research, that reasoning breaks down. When an official at America’s National Institutes of Health (NIH) reckons, despairingly, that researchers would find it hard to reproduce at least three-quarters of all published biomedical findings, the public part of the process seems to have failed.

It is not just that research results cannot be replicated. So much of what is published is just plain wrong and the belief that science is self-correcting is itself under pressure

Academic scientists readily acknowledge that they often get things wrong. But they also hold fast to the idea that these errors get corrected over time as other scientists try to take the work further. Evidence that many more dodgy results are published than are subsequently corrected or withdrawn calls that much-vaunted capacity for self-correction into question. There are errors in a lot more of the scientific papers being published, written about and acted on than anyone would normally suppose, or like to think. …… Statistical mistakes are widespread. The peer reviewers who evaluate papers before journals commit to publishing them are much worse at spotting mistakes than they or others appreciate. Professional pressure, competition and ambition push scientists to publish more quickly than would be wise. A career structure which lays great stress on publishing copious papers exacerbates all these problems. “There is no cost to getting things wrong,” says Brian Nosek, a psychologist at the University of Virginia who has taken an interest in his discipline’s persistent errors. “The cost is not getting them published.” 

…… In 2005 John Ioannidis, an epidemiologist from Stanford University, caused a stir with a paper showing why, as a matter of statistical logic, the idea that only one such paper in 20 gives a false-positive result was hugely optimistic. Instead, he argued, “most published research findings are probably false.” 

The tendency to only publish positive results leads also to statistics being skewed to allow results to be shown as being poitive

The negative results are much more trustworthy; …….. But researchers and the journals in which they publish are not very interested in negative results. They prefer to accentuate the positive, and thus the error-prone. Negative results account for just 10-30% of published scientific literature, depending on the discipline. This bias may be growing. A study of 4,600 papers from across the sciences conducted by Daniele Fanelli of the University of Edinburgh found that the proportion of negative results dropped from 30% to 14% between 1990 and 2007. Lesley Yellowlees, president of Britain’s Royal Society of Chemistry, has published more than 100 papers. She remembers only one that reported a negative result.

…. Other data-heavy disciplines face similar challenges. Models which can be “tuned” in many different ways give researchers more scope to perceive a pattern where none exists. According to some estimates, three-quarters of published scientific papers in the field of machine learning are bunk because of this “overfitting”

The idea of peer-review being some kind of a quality check of the results being published is grossly optimistic

The idea that there are a lot of uncorrected flaws in published studies may seem hard to square with the fact that almost all of them will have been through peer-review. This sort of scrutiny by disinterested experts—acting out of a sense of professional obligation, rather than for pay—is often said to make the scientific literature particularly reliable. In practice it is poor at detecting many types of error.

John Bohannon, a biologist at Harvard, recently submitted a pseudonymous paper on the effects of a chemical derived from lichen on cancer cells to 304 journals describing themselves as using peer review. An unusual move; but it was an unusual paper, concocted wholesale and stuffed with clangers in study design, analysis and interpretation of results. Receiving this dog’s dinner from a fictitious researcher at a made up university, 157 of the journals accepted it for publication. ….

……. As well as not spotting things they ought to spot, there is a lot that peer reviewers do not even try to check. They do not typically re-analyse the data presented from scratch, contenting themselves with a sense that the authors’ analysis is properly conceived. And they cannot be expected to spot deliberate falsifications if they are carried out with a modicum of subtlety.

Fraud is very likely second to incompetence in generating erroneous results, though it is hard to tell for certain. 

And then there is the issue that all results from Big Science can never be replicated because the cost of the initial work is so high. Medical research or clinical trials are also extremely expensive. Journals have no great interest to publish replications (even when they are negative). And then, to compound the issue, those who provide funding are less likely to extend funding merely for replication or for negative results.

People who pay for science, though, do not seem seized by a desire for improvement in this area. Helga Nowotny, president of the European Research Council, says proposals for replication studies “in all likelihood would be turned down” because of the agency’s focus on pioneering work. James Ulvestad, who heads the division of astronomical sciences at America’s National Science Foundation, says the independent “merit panels” that make grant decisions “tend not to put research that seeks to reproduce previous results at or near the top of their priority lists”. Douglas Kell of Research Councils UK, which oversees Britain’s publicly funded research argues that current procedures do at least tackle the problem of bias towards positive results: “If you do the experiment and find nothing, the grant will nonetheless be judged more highly if you publish.” 

Trouble at the lab 

The rubbish will only decline when there is a cost to publishing shoddy work which outweighs the gains of adding to a researcher’s list of publications. At some point researchers will need to be held liable and accountable for their products (their publications). Not just for fraud or misconduct but even for negligence or gross negligence when they do not carry out their work using the best available practices of the field. These are standards that some (but not all) professionals are held to and there should be no academic researcher who is not also subject to such a standard. If peer-review is to recover some of its lost credibility then anonymous reviews must disappear and reviewers must be much more explicit about what they have checked and what they have not.

Tags: , , , ,


%d bloggers like this: