2,000 year old thin film coating technology

Ancient gold and silversmiths used empirical methods with little knowledge of physics and chemistry to gild (silver and gold) statues and other works of art. It was an art – generally involving the use of mercury – which was also used by counterfeiters. Many of their techniques are still unknown. Some of the quality they achieved has still not been matched. A new paper is published in Accounts of Chemical Research (paywalled).

ACS Press ReleaseGabriel Maria Ingo and colleagues point out that scientists have made good progress in understanding the chemistry of many ancient artistic and other artifacts — crucial to preserve them for future generations. Big gaps in knowledge remained, however, about how gilders in the Dark Ages and other periods applied such lustrous, impressively uniform films of gold or silver to intricate objects. Ingo’s team set out to apply the newest analytical techniques to uncover the ancients’ artistic secrets.

They discovered that gold- and silversmiths 2,000 years ago developed a variety of techniques, including using mercury like a glue to apply thin films of metals to statues and other objects. Sometimes, the technology was used to apply real gold and silver. It also was used fraudulently, to make cheap metal statues that look like solid gold or silver. The scientists say that their findings confirm “the high level of competence reached by the artists and craftsmen of these ancient periods who produced objects of an artistic quality that could not be bettered in ancient times and has not yet been reached in modern ones.

Gabriel Maria Ingo, Giuseppe Guida, Emma Angelini, Gabriella Di Carlo, Alessio Mezzi, Giuseppina Padeletti.Ancient Mercury-Based Plating Methods: Combined Use of Surface Analytical Techniques for the Study of Manufacturing Process and Degradation PhenomenaAccounts of Chemical Research, 2013; : 130705111206005 DOI: 10.1021/ar300232e



Abstract Image

Fire gilding and silvering are age-old mercury-based processes used to coat thesurface of less precious substrates with thin layers of gold or silver. In ancient times, these methods were used to produce and decorate different types of artefacts, such as jewels, statues, amulets, and commonly-used objects. Gilders performed these processes not only to decorate objects but also to simulate the appearance of gold or silver, sometimes fraudulently. From a technological point of view, the aim of these workmen over 2000 years ago was to make the precious metal coatings as thin and adherent as possible. This was in order to save expensive metals and to improve the resistance to the wear caused by continued use and circulation.

Without knowledge about the chemical–physical processes, the ancient crafts-men systematically manipulated these metals to create functional and decorative artistic objects. The mercury-based methods were also fraudulently used in ancient times to produce objects such as jewels and coins that looked like they were made of silver or gold but actually had a less precious core. These coins were minted by counterfeiters but also by the official issuing authorities. The latter was probably because of a lack of precious metals, reflecting periods of severe economic conditions.

In this Account, we discuss some representative cases of gold- and silver-coatedobjects, focusing on unique and valuable Roman and Dark Ages period works of art, such as the St. Ambrogio’s altar (825 AD), and commonly used objects. We carried out the investigations using surface analytical methods, such as selected area X-ray photoelectron spectroscopy and scanning electron microscopy combined with energy-dispersive spectroscopy. We used these methods to investigate the surface and subsurface chemical features of these important examples of art and technology, interpreting some aspects of the manufacturing methods and of disclosing degradation agents and mechanisms. These findings may contribute to cultural heritage preservation, thus extending the applicability of the surface analytical techniques.


Tags: , , , , ,

%d bloggers like this: