Posts Tagged ‘Biology’

Physics came first and then came chemistry and later biology

August 19, 2015

I generally take it that there are only 3 basic sciences, physics, chemistry and biology. I take logic to be the philosophical framework and the background for the observation of the universe. Mathematics is then not a science but a language by which the observations of the universe can be addressed. All other sciences are combinations or derivatives of the three basic sciences. Geology, astronomy, cosmology, psychology, sociology, archaeology, and all the rest derive from the basic three.

I was listening to a report today about some Japanese researchers  who generated protein building blocks by recreating impacts by comets containing water, amino acids and silicate. Some of the amino acids linked together to form peptides (chained molecules). Recurring lengths of peptide chains form proteins and that leads to life. What interested me though was the element of time.

Clearly “chemistry” had to exist before “biology” came into existence. Chemistry therefore not only comes first and “higher” in the hierarchy of the existence of things but is also a necessary, but insufficient, requirement for “biology” to exist. Chemistry plus some “spark” led to biology. In that case the basic sciences are reduced to two since biology derives from chemistry. I cannot conceive of biology preceding chemistry. The elements and atoms and molecules of chemistry had to exist before the “spark” of something brough biology into existence.

chemical reactions (chemistry) + “spark of life”(physics?) = biology

By the same token, does physics precede chemistry? I think it must. Without the universe existing (physics) and all the elements existing within it (which is also physics) and without all the forces acting upon the elements (still physics), there would be no chemistry to exist. Or perhaps the Big Bang was physics and the creation of the elements itself was chemistry? But considering that nuclear reactions (fusion or fission) and the creation of new elements are usually considered physics, it would seem that the existence of physics preceded the existence of chemistry. The mere existence of elements would be insufficient to set in motion reactions between the elements. Some other forces are necessary for that (though some of these forces are even necessary for the existence of the elements). Perhaps physics gives the fundamental particles (whatever they are) and then chemistry begins with the formation of elements? Whether chemistry starts with elements or with the fundamental particles, physics not only must rank higher as a science, it must have come first. Particles must first exist before they can react with each other.

Particles (physics) + forces (physics) = chemistry.

In any event, and by whatever route I follow, physics preceded chemistry, and physics must exist first for chemistry to come into being. That makes chemistry a derivative of physics as biology is a derivative of chemistry.

We are left with just one fundamental science – physics.

by elfbrazil wikipedia


A special gene for camouflage

November 1, 2010

C. Zhang, Y. Song, D. A. Thompson, M. A. Madonna, G. L. Millhauser, S. Toro, Z. Varga, M. Westerfield, J. Gamse, W. Chen, R. D. Cone. Inaugural Article: Pineal-specific agouti protein regulates teleost background adaptationProceedings of the National Academy of Sciences, 2010; DOI: 10.1073/pnas.1014941107

Science Daily


Like other bony fish, the peacock flounder can change the color and pattern of its skin to blend into the sea floor. (Credit: Photo by Jimmie Mack)


Researchers led by Vanderbilt’s Dr. Roger Cone have discovered a new member of a gene family that has powerful influences on pigmentation and the regulation of body weight.

The gene is the third member of theagouti family. Two agouti genes have been identified previously in humans. One helps determine skin and hair color, and the other may play an important role in obesity and diabetes. The new gene, called agrp2, has been found exclusively in bony fish, including zebrafish, trout and salmon. The protein it encodes enables fish to change color dramatically to match their surroundings, the researchers report this week in the early edition of theProceedings of the National Academy of Sciences (PNAS).

“When my graduate student, Youngsup Song, discovered a third agouti protein in the fish pineal gland, an organ that regulates daily rhythms in response to light, we initially thought we had found the pathway that regulates hunger diurnally,” said Cone, chair of the Department of Molecular Physiology & Biophysics and director of the Vanderbilt Institute for Obesity and Metabolism.

“That is the mechanism that makes you hungry during the day, but not at night,” he continued. “However, Chao Zhang, a graduate student who followed up the study, ultimately discovered that this agouti protein … is involved in the rapid pigment changes that allow fish to adapt to their environment.”

This phenomenon, called background adaptation, also has been observed in mammals. The coat of the arctic hare, for example, turns from brown in summer to white camouflage against the winter snow.

In contrast to mammals that have to grow a new coat to adapt to a changing environment, fish, amphibians and reptiles can change their skin color in a matter of minutes. The first agouti gene, which produces the striped “agouti” pattern in many mammals, was discovered in 1993. The same year, Cone and his colleagues at Oregon Health Sciences University in Portland reported the discovery of the gene that encoded the melanocortin-1 receptor, a key player in the pigmentation story.

In the current paper, Cone’s group reports that the newly discovered protein, AgRP2, regulates expression of the prohormone genes pmch and pmchl, precursors to melanin-concentrating hormone, which has a pigment-lightening effect. “Together, the versatile agouti proteins and melanocortin receptors are responsible for regulation of body weight, the banded patterns of mammalian coats, and even red hair in most people,” Cone said. The current work shows that agouti proteins are also involved in the camouflage mechanisms used in thousands of fish species.

Read the article.

If only the gene could be activated in humans as well!!!

%d bloggers like this: