Posts Tagged ‘kimberlite’

More evidence of water in the earth’s interior

March 13, 2014

There could be much more water trapped with minerals deep in the earth’s interior than all the surface water in the oceans.

D. G. Pearson, F. E. Brenker, F. Nestola, J. McNeill, L. Nasdala, M. T. Hutchison, S. Matveev, K. Mather, G. Silversmit, S. Schmitz, B. Vekemans, L. Vincze.Hydrous mantle transition zone indicated by ringwoodite included within diamondNature, 2014; 507 (7491): 221 DOI: 10.1038/nature13080

Deep Earth

Ringwoodite is thought to form between 410km and 660km beneath the Earth’s surface graphic BBC

BBC: Diamonds, brought to the Earth’s surface in violent eruptions of deep volcanic rocks called kimberlites, provide a tantalising window into the deep Earth.A research team led by Professor Graham Pearson of the University of Alberta, Canada, studied a diamond from a 100 million-year-old kimberlite found in Juina, Brazil, as part of a wider project. They noticed that it contained a mineral, ringwoodite, that is only thought to form between 410km and 660km beneath the Earth’s surface, showing just how deep some diamonds originate. 

While ringwoodite has previously been found in meteorites, this is the first time a terrestrial ringwoodite has been seen. But more extraordinarily, the researchers found that the mineral contains about 1% water. While this sounds like very little, because ringwoodite makes up almost all of this immense portion of the deep Earth, it adds up to a huge amount of deep water.

Dr Sally Gibson from the University of Cambridge, who was not involved in the work, commented: “Finding water in such large concentrations is a hugely significant development in our understanding of the ultimate origin of water now present at Earth’s surface.”

University of Alberta Press Release:


Crystal (~150 micrometers across) of Fo90 composition blue ringwoodite synthesized at 20 GPa and 1200 °C. Wikipedia

…. discovered the first-ever sample of a mineral called ringwoodite. Analysis of the mineral shows it contains a significant amount of water—1.5 per cent of its weight—a finding that confirms scientific theories about vast volumes of water trapped 410 to 660 kilometres beneath the Earth, between the upper and lower mantle.

“This sample really provides extremely strong confirmation that there are local wet spots deep in the Earth in this area,” said Pearson, a professor in the Faculty of Science, whose findings were published March 13 in Nature. “That particular zone in the Earth, the transition zone, might have as much water as all the world’s oceans put together.”

…. Ringwoodite is a form of the mineral peridot, believed to exist in large quantities under high pressures in the transition zone. Ringwoodite has been found in meteorites but, until now, no terrestrial sample has ever been unearthed because scientists haven’t been able to conduct fieldwork at extreme depths.

Pearson’s sample was found in 2008 in the Juina area of Mato Grosso, Brazil, where artisan miners unearthed the host diamond from shallow river gravels. The diamond had been brought to the Earth’s surface by a volcanic rock known as kimberlite—the most deeply derived of all volcanic rocks.

……. Scientists have been deeply divided about the composition of the transition zone and whether it is full of water or desert-dry. Knowing water exists beneath the crust has implications for the study of volcanism and plate tectonics, affecting how rock melts, cools and shifts below the crust.

“One of the reasons the Earth is such a dynamic planet is because of the presence of some water in its interior,” Pearson said. “Water changes everything about the way a planet works.”


Diamonds from the deep: Carbon cycle extends down to earth’s lower mantle

September 16, 2011
S-waves do not pass through the Earth's core, ...

Image via Wikipedia

What we know about the layers forming the interior of the earth are mostly inferred from mapping the propagation and refraction of earthquake waves. The earth’s lower mantle starts some 700km down and extends to a depth of about 2900km. The upper and lower mantle demonstrate – in fluid dynamic terms – a viscous chaotic flow but the mechanisms by which material is exchanged between the upper and lower mantle are not fully understood.

Science Daily: Michael Walter of the University of Bristol and colleagues in Brazil and the United States analyzed a set of “superdeep” diamonds from the Juina kimberlite field in Brazil. Most diamonds excavated at Earth’s surface originated at depths of less than 200 kilometers. Some parts of the world, however, have produced rare, superdeep diamonds, containing tiny inclusions of other material whose chemistry indicates that the diamonds formed at far greater depths

M. J. Walter, S. C. Kohn, D. Araujo, G. P. Bulanova, C. B. Smith, E. Gaillou, J. Wang, A. Steele, S. B. Shirey. Deep Mantle Cycling of Oceanic Crust: Evidence from Diamonds and their Mineral Inclusions. Science, 2011; DOI: 10.1126/science.1209300


A primary consequence of plate tectonics is that basaltic oceanic crust subducts with lithospheric slabs into the mantle. Seismological studies extend this process to the lower mantle, and geochemical observations indicate return of oceanic crust to the upper mantle in plumes. There has been no direct petrologic evidence, however, of the return of subducted oceanic crustal components from the lower mantle. We analyzed superdeep diamonds from Juina-5 kimberlite, Brazil, which host inclusions with compositions comprising the entire phase assemblage expected to crystallize from basalt under lower mantle conditions. The inclusion mineralogies require exhumation from the lower to upper mantle. Because the diamond hosts have carbon isotope signatures consistent with surface-derived carbon, we conclude that the deep carbon cycle extends into the lower mantle.

“This study shows the extent of Earth’s carbon cycle on the scale of the entire planet, connecting the chemical and biological processes that occur on the surface and in the oceans to the far depths of Earth’s interior,” according to Nick Wigginton, associate editor at Science.

The carbon cycle generally refers to the movement of carbon through the atmosphere, oceans, and the crust. Previous observations suggested that the carbon cycle may even extend to the upper mantle, which extends roughly 400 kilometers into Earth. In this region, plates of ocean crust — bearing a carbon-rich sediment layer — sink beneath other tectonic plates and mix with the molten rock of the mantle.

Seismological and geochemical studies have suggested that oceanic crust can sink all the way to the lower mantle, more than 660 kilometers down. But actual rock samples with this history have been hard to come by

File:Slice earth.svg

Schematic view of the interior of Earth. 1. continental crust - 2. oceanic crust - 3. upper mantle - 4. lower mantle - 5. outer core - 6. inner core - A: Mohorovičić discontinuity - B: Gutenberg Discontinuity - C: Lehmann discontinuity: image Wikipedia

PhysOrg: The diamonds were analyzed for carbon at Carnegie. Four of the diamonds contained low amounts of carbon-13, a signature not found in the lower mantle and consistent with an ocean-crust origin at Earth’s surface. “The carbon identified in other super-deep, lower mantle diamonds is chiefly mantle-like in composition,” remarked co-author Steven Shirey  at Carnegie. “We looked at the variations in the isotopes of the carbon atoms in the diamonds. Carbon originating in a rock called basalt, which forms from lava at the surface, is often different from that which originates in the mantle, in containing relatively less carbon-13. These super-deep diamonds contained much less carbon-13, which is most consistent with an origin in the organic component found in altered oceanic crust.

%d bloggers like this: