Posts Tagged ‘Nature Geoscience’

“Climate science” now hunting for cooling effects – and finds the brightness of clouds

May 6, 2013

How is it that – for a settled science – all these new “cooling” mechanisms are suddenly being found? Could it have something to do with trying to rescue climate models which have failed to predict the slowdown in global warming? “Climate science” is now hunting for previously unidentified cooling effects to explain the warming that has not happened.

This time it is the brightness of clouds! Apparently manmade pollution in the form of organics can enhance the formation of clouds which happen to be brighter from above and which reflect more of the suns radiation. Voilà! An as yet unidentified cooling effect.

But this conclusion comes not from measurements but from yet another model!

From the University of Machester (via Alpha Galileo):

Organic vapours affect clouds leading to previously unidentified climate cooling

University of Manchester scientists, writing in the journal Nature Geoscience, have shown that natural emissions and manmade pollutants can both have an unexpected cooling effect on the world’s climate by making clouds brighter.

Clouds are made of water droplets, condensed on to tiny particles suspended in the air. When the air is humid enough, the particles swell into cloud droplets. It has been known for some decades that the number of these particles and their size control how bright the clouds appear from the top, controlling the efficiency with which clouds scatter sunlight back into space. A major challenge for climate science is to understand and quantify these effects which have a major impact in polluted regions.

The tiny seed particles can either be natural (for example, sea spray or dust) or manmade pollutants (from vehicle exhausts or industrial activity). These particles often contain a large amount of organic material and these compounds are quite volatile, so in warm conditions exist as a vapour (in much the same way as a perfume is liquid but gives off an aroma when it evaporates on warm skin).

The researchers found that the effect acts in reverse in the atmosphere as volatile organic compounds from pollution or from the biosphere evaporate and give off characteristic aromas, such as the pine smells from forest, but under moist cooler conditions where clouds form, the molecules prefer to be liquid and make larger particles that are more effective seeds for cloud droplets.

“We discovered that organic compounds such as those formed from forest emissions or from vehicle exhaust, affect the number of droplets in a cloud and hence its brightness, so affecting climate,” said study author Professor Gordon McFiggans, from the University of Manchester’s School of Earth, Atmospheric and Environmental Sciences.

“We developed a model and made predictions of a substantially enhanced number of cloud droplets from an atmospherically reasonable amount of organic gases.

“More cloud droplets lead to brighter cloud when viewed from above, reflecting more incoming sunlight. We did some calculations of the effects on climate and found that the cooling effect on global climate of the increase in cloud seed effectiveness is at least as great as the previously found entire uncertainty in the effect of pollution on clouds.”

  • ‘Cloud droplet number enhanced by co-condensation of organic papers,’ by Gordon McFiggans et al, will be published in Nature Geoscience on Sunday 5 May 2013.

Plants produce biogenic aerosols and provide a negative feedback to warming climate

April 30, 2013

Another study showing a negative feedback to a warming climate. Needless to say such a negative feeback finds no place in climate models. (The lead author points out that this previous statement is erroneus). Needless to say I doubt if such negative feedback is included in all climate models.

 Paasonen, P., et. al. 2013. Evidence for negative climate feedback: warming increases aerosol number concentrationsNature Geoscience doi: 10.1038/NGEO1800

The International Institute for Applied Systems Analysis (IIASA) reports:

© Veronika Markova |

As temperatures warm, plants release gases that help form clouds and cool the atmosphere, according to research from IIASA and the University of Helsinki. 

The new study, published in Nature Geoscience, identified a negative feedback loop in which higher temperatures lead to an increase in concentrations of natural aerosols that have a cooling effect on the atmosphere. “Plants, by reacting to changes in temperature, also moderate these changes,” says IIASA and University of Helsinki researcher Pauli Paasonen, who led the study. 

Scientists had known that some aerosols – particles that float in the atmosphere – cool the climate as they reflect sunlight and form cloud droplets, which reflect sunlight efficiently. Aerosol particles come from many sources, including human emissions. But the effect of so-called biogenic aerosol – particulate matter that originates from plants – had been less well understood. Plants release gases that, after atmospheric oxidation, tend to stick to aerosol particles, growing them into the larger-sized particles that reflect sunlight and also serve as the basis for cloud droplets. The new study showed that as temperatures warm and plants consequently release more of these gases, the concentrations of particles active in cloud formation increase. 

“Everyone knows the scent of the forest,” says Ari Asmi, University of Helsinki researcher who also worked on the study. “That scent is made up of these gases.” While previous research had predicted the feedback effect, until now nobody had been able to prove its existence except for case studies limited to single sites and short time periods. The new study showed that the effect occurs over the long-term in continental size scales. 

The effect of enhanced plant gas emissions on climate is small on a global scale – only countering approximately 1 percent of climate warming, the study suggested. “This does not save us from climate warming,” says Paasonen. However, he says, “Aerosol effects on climate are one of the main uncertainties in climate models. Understanding this mechanism could help us reduce those uncertainties and make the models better.”  

The study also showed that the effect was much larger on a regional scale, counteracting possibly up to 30% of warming in more rural, forested areas where anthropogenic emissions of aerosols were much lower in comparison to the natural aerosols. That means that especially in places like Finland, Siberia, and Canada this feedback loop may reduce warming substantially. ….. 

%d bloggers like this: