Posts Tagged ‘NASA’

Confirmed: Antarctic has been gaining ice mass (even while fossil fuel use has been increasing)

November 1, 2015

One again, very clear evidence that the IPCC reports are mere advocacy for lobby groups. They are not scientific reports.

A new study by NASA confirms their finding of 2012 that the Antarctic is gaining in ice mass. The paper is published in the Journal of Glaciology.

Zwally, H. Jay, ; Li, Jun; Robbins, John W.; Saba, Jack L.; Yi, Donghui; Brenner, Anita C. Mass gains of the Antarctic ice sheet exceed losses. Journal of Glaciology, 2015 DOI: 10.3189/2015JoG15J071

Antarctic ice accumulation not only provides no evidence of any global warming, it is also direct evidence that the global warming hypothesis itself is flawed. This ice accumulation has been taking place while carbon dioxide concentration in the atmosphere has been increasing. Leaving aside how much of this increase may be due to human use of fossil fuel, the ice accumulation shows that carbon dioxide concentration is not a significant factor.

As the French mathematicians recently charged:

no sensible, high-quality journal would publish the IPPC‘s work. The IPPC‘s conclusions go against observed facts; the figures used are deliberately chosen to support its conclusions (with no regard for the most basic scientific honesty), and the natural variability of phenomena is passed over without comment. The IPPC‘s report fails to respect the fundamental rules of scientific research and could not be published in any review with a reading panel.

The new NASA paper shows that in recent times the Antarctic gains about 200 billion tons of ice a year while losing about 65 billion tons. Which also means that the Antarctic is responsible for about 135 million tons of water leaving the water cycle and being locked up as ice. This water can only come from the moisture concentration in the atmosphere (including clouds) or from the sea. There is no measurable change in the moisture in the atmosphere and that leaves the seas.

Rather than Antarctic melting causing sea level rise, Antarctic ice accumulation is most likely reducing the rate of sea level rise due to the recovery from the last glacial.

Of course the global warming orthodoxy will now tell us with impressive modelling results, that ice increasing at the Antarctic is perfectly consistent with the warming of the planet.

Go pull the other one.

This and the 2012 paper are in direct contradiction to the IPCC’s 2013 report which claimed that the Antarctic was losing ice. But as the French mathematicians noted the IPCC reports would not meet the normal publishing standards for scientific reports.

I don’t suppose anybody will take any notice of this during the Paris wealth transfer discussions. When will any politician or government have the courage to challenge the religious orthodoxy?

Abstract:

Mass changes of the Antarctic ice sheet impact sea-level rise as climate changes, but recent rates have been uncertain. Ice, Cloud and land Elevation Satellite (ICESat) data (2003–08) show mass gains from snow accumulation exceeded discharge losses by 82 ± 25 Gt a–1, reducing global sea-level rise by 0.23 mm a–1. European Remote-sensing Satellite (ERS) data (1992–2001) give a similar gain of 112 ± 61 Gt a–1. Gains of 136 Gt a–1 in East Antarctica (EA) and 72 Gt a–1 in four drainage systems (WA2) in West Antarctic (WA) exceed losses of 97 Gt a–1 from three coastal drainage systems (WA1) and 29 Gt a–1 from the Antarctic Peninsula (AP). EA dynamic thickening of 147 Gt a–1 is a continuing response to increased accumulation (>50%) since the early Holocene. Recent accumulation loss of 11 Gt a–1 in EA indicates thickening is not from contemporaneous snowfall increases. Similarly, the WA2 gain is mainly (60 Gt a–1) dynamic thickening. In WA1 and the AP, increased losses of 66 ± 16 Gt a–1 from increased dynamic thinning from accelerating glaciers are 50% offset by greater WA snowfall. The decadal increase in dynamic thinning in WA1 and the AP is approximately one-third of the long-term dynamic thickening in EA and WA2, which should buffer additional dynamic thinning for decades.

This map shows the rates of mass changes from ICESat 2003-2008 over Antarctica. Sums are for all of Antarctica: East Antarctica (EA, 2-17); interior West Antarctica (WA2, 1, 18, 19, and 23); coastal West Antarctica (WA1, 20-21); and the Antarctic Peninsula (24-27). Credit: Jay Zwally/ Journal of Glaciology

This map shows the rates of mass changes from ICESat 2003-2008 over Antarctica. Sums are for all of Antarctica: East Antarctica (EA, 2-17); interior West Antarctica (WA2, 1, 18, 19, and 23); coastal West Antarctica (WA1, 20-21); and the Antarctic Peninsula (24-27).
Credit: Jay Zwally/ Journal of Glaciology

Science Daily reports:

A new NASA study says that an increase in Antarctic snow accumulation that began 10,000 years ago is currently adding enough ice to the continent to outweigh the increased losses from its thinning glaciers.

The research challenges the conclusions of other studies, including the Intergovernmental Panel on Climate Change’s (IPCC) 2013 report, which says that Antarctica is overall losing land ice.

According to the new analysis of satellite data, the Antarctic ice sheet showed a net gain of 112 billion tons of ice a year from 1992 to 2001. That net gain slowed to 82 billion tons of ice per year between 2003 and 2008.

“We’re essentially in agreement with other studies that show an increase in ice discharge in the Antarctic Peninsula and the Thwaites and Pine Island region of West Antarctica,” said Jay Zwally, a glaciologist with NASA Goddard Space Flight Center in Greenbelt, Maryland, and lead author of the study, which was published on Oct. 30 in the Journal of Glaciology. “Our main disagreement is for East Antarctica and the interior of West Antarctica — there, we see an ice gain that exceeds the losses in the other areas.” Zwally added that his team “measured small height changes over large areas, as well as the large changes observed over smaller areas.” 

Scientists calculate how much the ice sheet is growing or shrinking from the changes in surface height that are measured by the satellite altimeters. In locations where the amount of new snowfall accumulating on an ice sheet is not equal to the ice flow downward and outward to the ocean, the surface height changes and the ice-sheet mass grows or shrinks.

But still the authors find it necessary to bow down to orthodoxy. That’s probably necessary to get published and to avoid being labelled climate heretics. “It might only take a few decades for Antarctica’s growth to reverse”. Right, and then again it might not.

But it might only take a few decades for Antarctica’s growth to reverse, according to Zwally. “If the losses of the Antarctic Peninsula and parts of West Antarctica continue to increase at the same rate they’ve been increasing for the last two decades, the losses will catch up with the long-term gain in East Antarctica in 20 or 30 years — I don’t think there will be enough snowfall increase to offset these losses.”

In any event, reducing carbon dioxide emissions by cutting the use of fossil  fuels is of no significance to Antarctic ice accumulation – and therefore, of no significance either to any global warming that may be occurring.

Advertisements

NASA alarmists predict 99.9% probability of LA earthquake in 3 years, but US Geological Survey is sharply critical

October 22, 2015

A new NASA paper published in Earth and Space Science claims that “For a M ≥ 5 earthquake within a circle of radius 100 km, and over the 3 years following 1 April 2015, the probability is 99.9%”.

But the US Geological Survey was very quick to criticise the methods and the conclusion.

NASA was once an unimpeachable science source. No longer. That brand value has been badly impaired. There is far too much exaggeration and hype. There are peripheral sections of NASA which seem to revel in alarmism. This is especially visible when they pontificate about areas which are not their core business. Just because the radar or aerial or space based images may originate with NASA, some think it gives them a pondus on subjects they are not expert on. Perhaps it is also the chase for publications and notoriety from some sections of the organisation who feel their work does not get enough publicity. NASA statements about potential natural disasters always seem to be highly exaggerated for effect. This includes storms, hurricanes, climate change and now earthquakes. Even when they do have something to say they tend to overdo the hype (as with the recent press conference about Martian water). The alarmist theme is encroaching even into the core areas. Have you noticed how many recent asteroids have been highlighted as “not being any danger”? Reverse psychology being applied by NASA perhaps, to inject some alarm into situations which have not the slightest danger and which otherwise would have passed unremarked?

Naturally NASA issued a press release. However, even the NASA PR machine had not the cheek themselves to highlight the main conclusion which is in the discussion section (Section 5) of the paper:

The calculated probability for a M ≥ 6 earthquake within a circle of radius 100 km, and over the 3 years following 1 April 2015, is 35%. For a M ≥ 5 earthquake within a circle of radius 100 km, and over the 3 years following 1 April 2015, the probability is 99.9%.

A 99.9% chance is as close to certainty in a prediction that one could ever get. But the US Geological Survey was not amused by these upstart alarmists. It took to Facebook and was sharply critical and has been quick to publish a severe put-down.

USGS Statement on JPL La Habra Study in the news:

This paper claims a 99.9% probability of an earthquake of magnitude 5 or greater occurring in the next 3 years within a large area of Southern California without providing a clear description of how these numbers were derived. The area—a 100 km radius circle centered on the city of La Habra—is a known seismically active area. For this same area, the community developed and accepted model of earthquake occurrence, “UCERF3”, which is the basis of the USGS National Seismic Hazard Maps, gives a 3-year probability of 85%. In other words, the accepted random chance of a M5 or greater in this area in 3 years is 85%, independent of the analysis in this paper.

While the earthquake forecast presented in this paper has been published in the online journal Earth and Space Sciences, it has not yet been examined by the long-established committees that evaluate earthquake forecasts and predictions made by scientists. These committees, the California Earthquake Prediction Evaluation Council, which advises the California Office of Emergency Services, and the National Earthquake Prediction Evaluation Council, which advises the U.S. Geological Survey, were established to provide expert, independent assessment of earthquake predictions.

The earthquake rate implied by the 99.9% probability is significantly higher than observed at any time previously in Southern California, and the lack of details on the method of analysis makes a critical assessment of this approach very difficult. Therefore, the USGS does not consider the analysis presented in this paper a reason to change our assessment of the hazard.

http://pubs.usgs.gov/fs/2015/3009/

“Therefore, the USGS does not consider the analysis presented in this paper a reason to change our assessment of the hazard” effectively says that the USGS does not think this paper has any significance. 

One wonders – from the USGS comments – how this paper got to be published. The peer review applied for this paper seems a little suspect. None of the “peers” came from the USGS apparently. Was it just a “pal” review? In recent times, in my perception, many of the peripheral NASA sections publish papers with little substance just to say “Look how good we are“. I suppose they are deemed necessary to maintain department budgets.

Outside of its own core areas, NASA is strongly in the alarmist camp. They probably thinks it helps funding. But perhaps NASA needs to take stock of the damage being done to their brand every time they choose the alarmist route.

I think I will go with the US Geological Survey in this case and their more nuanced probabilities over 30 years.

US Geological Survey 30 year Uniform California Earthquake Rupture Forecast

Nasa set to announce detection of flowing water on Mars

September 27, 2015

UPDATE!

NASA’s live stream is down (for configuration errors) but Nature Geoscience has released this paper from embargo. (Probably water on the brain)

Spectral evidence for hydrated salts in recurring slope lineae on Mars

Looks like the earlier speculation was correct.


NASA is hyping an announcement to be made tomorrow about Mars.

Press Release:

NASA to Announce Mars Mystery Solved

NASA will detail a major science finding from the agency’s ongoing exploration of Mars during a news briefing at 11:30 a.m. EDT on Monday, Sept. 28 at the James Webb Auditorium at NASA Headquarters in Washington. The event will be broadcast live on NASA Television and the agency’s website.

News conference participants will be: 

  • Jim Green, director of planetary science at NASA Headquarters
  • Michael Meyer, lead scientist for the Mars Exploration Program at NASA Headquarters
  • Lujendra Ojha of the Georgia Institute of Technology in Atlanta
  • Mary Beth Wilhelm of NASA’s Ames Research Center in Moffett Field, California and the Georgia Institute of Technology
  • Alfred McEwen, principal investigator for the High Resolution Imaging Science Experiment (HiRISE) at the University of Arizona in Tucson

A brief question-and-answer session will take place during the event with reporters on site and by phone.

It will probably be connected with this paper to be presented this week at the European Planetary Science Congress. Three of the authors are to be at the Press Announcement. Even if not specifically about this paper the announcement is likely to be about water on Mars.

Recurring slope lineae observed in HiRISE images of Mars. The RSL form on Sun facing slopes during warm season and fade during cold season. image sci-news.com

L Ojha et al, Spectral Evidence for Hydrated Salts in Seasonal Brine Flows on Mars, Vol. 10, EPSC 2015-838-1, 2015 European Planetary Science Congress 2015

AbstractRecurring Slope Lineae (RSL) are seasonal flows on warm Martian slopes initially proposed, but not confirmed, to be caused by briny water seeps. Here we report spectral evidence for hydrated salts on RSL slopes from four different RSL locations from the Compact Reconnaissance Imaging Spectrometer for Mars on board Mars Reconnaissance Orbiter. These results confirm the hypothesis that RSL are due to present-day activity of briny water.

It would suggest that the dark streaks observed periodically on the surface of Mars are caused by the seasonal flow of salt-laden water across the surface. The salt levels would have to be high enough to allow the water to remain liquid long enough to create the streaks before it freezes. Some of the streaks seem to be of the order of several hundred metres in length.

If there actually is sub-surface ice on Mars, then it is not an unthinkable geo-engineering step (terraforming) to achieving a Martian atmosphere which, in time, could contain free oxygen in addition to water vapour and carbon dioxide. It is still not clear how Earth got its Nitrogen which provides a stable ballast and it is unclear if a similar “ballast gas” could be engineered around Mars.

The paper continues:

Pure water would rapidly evaporate and/or freeze on the present-day surface of Mars at most times and places; however brines are far less volatile compared to pure water due to their lower freezing points and evaporation rates. Various salts (e.g. sulfates, chlorides and perchlorates) have been detected on the surface of Mars from remote and in situ investigations. These salts can lower the freezing point of water by up to 80 K, lower the evaporation rate of water by an order of magnitude, and can be hygroscopic (i.e. able to easily absorb atmospheric moisture), thus increasing the possibility of forming and stabilizing liquid water on the surface of present day Mars. Recurring Slope Lineae (RSL) are narrow, low reflectance features forming on present-day Mars that have been hypothesized to be due to the transient flow of liquid water. …. 

and concludes:

The origin of water forming the RSL is not understood, given the extreme aridity of Mars’ surface environment. Water could form by the surface/sub-surface melting of ice, but the presence of near-surface equatorial ice is highly unlikely. Water could also form via deliquescence by hygroscopic salts, although it is unclear how the Martian atmosphere can sufficiently supply water vapor every year to create RSL. The absence of concentrated deliquescent salts would rule out this hypothesis. Another hypothesis is seasonal discharge of a local aquifer, which concentrates salt deposits as the brine evaporates, but then lineae emulating from the tops of local peaks are difficult to explain. It is conceivable that RSL are forming in different parts of Mars via different formation mechanisms. The new compositional insights reported here from widely separated sites provide essential new clues.

Water on Mars not only gives a higher probability of some life-form having existed, or existing, on Mars but also increases the probability of human life coming to exist on Mars. That would be something to be around for, but it will be after I am long gone.

This is not a NASA image of India on Diwali night

October 23, 2014

It is doing the rounds again purporting to be a NASA image of India on Diwali night. It surfaces every year at Diwali time. It is a composite image and the coloured lights only represent different times between 1992 and 2003.

I just repeat what I wrote two years ago.

It is indeed from NASA, it is from space and it is at night. But it is not on a Diwali night and is actually a composite picture of night illumination over many years to try and show population increase. Even the colours are not real. It was circulated widely at this time last year as well. But as Robert Johnson of Business Insider points out:

The photo is an overlay of shots highlighting India’s burgeoning population over several years. The white lights were the only illumination visible before 1992. The blue lights appeared in 1992. The green lights in 1998. And the red lights appeared in 2003.

Current speculation suggests the lights are a result of the Hindu celebration Diwali, or the celebration of lights, held from mid-October to mid-November, but NASA was unable to confirm what time of year the shots were taken.

…. NASA says there are no more recent versions available.

Composite NASA image of India’s population development between 1992 and 2003. Blue is lights which appeared in 1992, green in 1998 and red in 2003. – image ngdc.noaa.gov

 

Maven to enter Mars orbit tonight and MOM on Wednesday

September 21, 2014

UPDATE:

NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft successfully entered Mars’ orbit at 10:24 p.m. EDT Sunday, Sept. 21, where it now will prepare to study the Red Planet’s upper atmosphere as never done before. MAVEN is the first spacecraft dedicated to exploring the tenuous upper atmosphere of Mars.

==============================================

NASA’s Maven will be inserted into Mars orbit later tonight at 2130 pm Eastern time and will be covered live by NASA TV.

India’s MOM should be inserted into Mars Orbit on Wednesday.

(Related: Alternate paths to Mars: NASA’s MAVEN compared to India’s MOM)

Maven planned Mars orbit insertion 20140921 - NASA

Maven planned Mars orbit insertion 20140921 – NASA

The orbit insertion factsheet from NASA is here: MAVEN Orbit Insertion Fact Sheet – NASA

The orbit-insertion maneuver will begin with the brief firing of six small thruster engines to steady the spacecraft. The engines will ignite and burn for 33 minutes to slow the craft, allowing it to be pulled into an elliptical orbit with a period of 35 hours.

Following orbit insertion, MAVEN will begin a six-week commissioning phase that includes maneuvering the spacecraft into its final orbit and testing its instruments and science-mapping commands. Thereafter, MAVEN will begin its one-Earth-year primary mission to take measurements of the composition, structure and escape of gases in Mars’ upper atmosphere and its interaction with the sun and solar wind….

MAVEN launched Nov. 18, 2013, from Cape Canaveral Air Force Station in Florida, carrying three instrument packages. It is the first spacecraft dedicated to exploring the upper atmosphere of Mars. The mission’s goal is to determine how the loss of atmospheric gas to space played a role in changing the Martian climate through time.

ISRO’s press briefing for the MOM Mars orbit insertion is here: MOM press briefing on Mars Orbit Insertion

MOM Mars Orbit insertion planned for 20140924  ISRO

MOM Mars Orbit insertion planned for 20140924 ISRO

MOM and MAVEN approach Mars

August 12, 2014

Both the Indian Mars Orbiter Mission (MOM – Mangalyaan, budget $70 million) and NASA’s MAVEN (budget $672 million) are now approaching Mars. Both are doing well according to their latest status updates.

MOM was launched on 5th November last year and MAVEN on 18th November, 2013. Whereas MAVEN on its Atlas 5 rocket could directly enter into a  Hohmann Transfer Orbit with periapsis at Earth’s orbit and apoapsis at the distance of the orbit of Mars, MOM had to take the low-cost, scenic route. Because of the relatively low payload capability of the PSLV launch rocket, MOM had to spend 26 days in ever-increasing earth orbits. MOM had to fire its Liquid Motor six times to work its way up to departing Earth orbit using a standard Hohmann Transfer Orbit on 1st December.

Alternate paths to Mars: NASA’s MAVEN compared to India’s MOM

MAVEN - MOM trajectories

MAVEN – MOM trajectories

 

When they were launched MAVEN was expected to reach Mars on 22nd September 2014 and MOM 2 days later on 24th September 2014. The time lines have shifted slightly subsequent to the mid-course corrections carried out and MOM is now expected to reach Mars orbit about a week ahead of MAVEN. I suspect that the time of Mars Orbit Insertion is still a little fluid, but both are about 1 month away. MOM is currently about 6 minutes away in radio signal distance.

Discovery News:

India’s Mars Orbiter Mission (MOM) is more than 80 percent of the way to Mars and performing well, according to a Facebook update posted July 21 by the Indian Space Research Organization. MOM is expected to enter orbit on Sept. 14.

The second craft, NASA’s Mars Atmosphere and Volatile EvolutioN (MAVEN), is also performing well. MAVEN is scheduled to embark on its final approach to the Red Planet on Sept. 21, one week after MOM’s arrival, principal investigator Bruce Jakosky said. After months of checkouts and tests, the spacecraft will now be left quiet until close to the big day.

NASA’s MAVEN has now gone into a “pre-Mars Orbit Insertion moratorium.” All systems required for a safe Mars Orbit Insertion remain powered on. But other systems like the instruments are shut down until late September because they are not needed for a successful MOI. We want the spacecraft system to be as “quiet” as possible and in the safest condition during the critical event on September 21st”.

Related: Frugal engineering for India’s Mars mission

A private, auspicious trip to Mars and back

November 20, 2013

I don’t believe in Astrology but 5th January 2018 is a particularly auspicious and propitious date for a quick jaunt to Mars and back. And billionaire Denis Tito plans to take advantage of the advantageous alignment of Mars and Earth to make the first manned trip to Mars and back. It would be a “free-return” trajectory so the couple making the trip would only fly around Mars and return to a landing on Earth 501 days after they left.

InspirationMars: The mission’s target launch date is Jan. 5, 2018. This exceptionally quick, free-return orbit opportunity occurs twice every 15 years. After 2018, the next opportunity won’t occur again until 2031. The mission will provide a platform for unprecedented science, engineering and education opportunities, using state-of-the-art technologies derived from NASA and the International Space Station. It will be financed primarily through philanthropic donations, with some potential support from government sources.

The closest distance between Mars and Earth varies by almost a factor of two over an 18 year period. Note that 1 AU (Astronomical Unit) is the average distance between the Sun and the Earth (about 150 million kilometers). NASA

Inspiration Mars Press Release: 

Dennis Tito, founder and chairman of the Inspiration Mars Foundation, testified today before the House Science Subcommittee on Space during a hearing on commercial space. Tito shared the results of a 90-day study undertaken by Inspiration Mars and developed through collaborative efforts with
NASA centers and industry partners to define a baseline architecture for a human mission to Mars. The
Foundation proposes to send a spacecraft in late 2017 or early 2018 bearing two astronauts, a man and
woman, to the far side of Mars and return them to Earth. ….. Inspiration Mars’ Architecture Study Report describes the proposed mission architecture to enable the voyage of 314 million miles in 501 days, which requires collaboration through a public-private partnership with NASA. The plan calls for two launches to keep crew and cargo separate, an inherent safety feature to the mission architecture. First, the SLS will lift off from Kennedy Space Center with a four-part payload to place cargo into Earth’s orbit, consisting of: an SLS upper-stage rocket to propel spacecraft from Earth’s orbit to Mars; a service module containing electrical power, propulsion and communication systems; a Cygnus-derived habitat module where the astronauts will live for 501 days; and an Earth Reentry Pod derived from Orion. The second launch will take the crew into orbit aboard a commercial transportation vehicle (selected from competing designs under NASA’s Commercial Crew Program). From there, the crew and Inspiration Mars vehicle stack will rendezvous in orbit using docking procedures perfected by more than 130 trips to the International Space Station. ….

Tito noted there is a window for a mission by a different trajectory, a mission longer by 88 days that could be flown in 2021. Tito stated, “Given Russia’s clear recognition of the value and prestige of accomplishments in human space exploration, and their long-time interest in exploring Mars, my personal belief is that in all likelihood the Energia super-heavy rocket revival announcement signals Russian intent to fly this mission in 2021. Their heavy lift rocket, along with their other designs for modules and the Soyuz, can fly this mission with modest upgrades to their systems. China is also developing suitable capabilities and must surely be contemplating this opportunity to be first to Mars. It is our civic duty to bring this to the attention of the executive and legislative government branches. The 2010 NASA authorization has given America the opportunity to be first to Mars, and we believe it should be taken by launching the mission to Mars in 2017.”

Fast Free return trajectories between Earth and Mars occur twice every 15 years:

Low energy Free Returns with TOFS around 3 years (or less) are plentiful and occur every synodic period. Higher energy Free Returns with TOFS around 2 years are also plentiful and occur synodically. Of particular interest are fast Free Returns which occur in 2015 and 2017 and have the shortest TOF of about 1.4 years. These trajectories may provide a timely opportunity for the first human mission to Mars.

File:Inspiration Mars trajectory.svg

Inspiration Mars trajectory: Wikimedia

“Practical schemes for sending humans to Mars have been on the drawing boards for more than 60 years. Pioneering space engineer Wernher von Braun, author of the 1952 book “Project Mars,” proposed Mars flyby flights using Apollo lunar spacecraft in the 1960s.” space.com

Smooth MAVEN launch followed by flawless insertion into Mars trajectory

November 18, 2013

A very smooth launch by NASA and lift-off exactly as planned.

And with the power of the Atlas V, just 52 minutes 42 seconds after launch MAVEN had separated from the launch vehicle and had been inserted into a Hohmann Transfer Orbit and on trajectory to reach Mars on 22nd September 2014.

NASA:

At 1:28 p.m. EST, NASA’s Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft began its 10-month journey to Mars orbit, launching aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida. MAVEN will take critical measurements of the Martian upper atmosphere to help scientists understand climate change over the Red Planet’s history.

The Centaur’s single RL-10A-4-2 engine ended its second burn on time. The next major milestone is the release of NASA’s MAVEN spacecraft.

Separation! Maven is now on its own.

Very smooth and absolutely flawless.

In the meantime the Indian Mars Orbiter Mission’s Mangalyaan has another 13 days in Earth orbit in its current orbit (193,000 km apogee) before one more burn of its motors puts it also into a Hohmann Transfer Orbit which should get it to Mars orbit on 24th September 2014. Spacecraft systems – most being operated for the first (or second) time – will be tested while in earth orbit.

The “poor man’s route” to Mars!

And India and ISRO have some 49 years of US NASA Mars missions to catch up to.

And while NASA is showing live feed of the launch, ISRO’s web-site is down – presumably because it could not handle the traffic. The FB page seems fine.

isro down 20131118

isro down 20131118

Alternate paths to Mars: NASA’s MAVEN compared to India’s MOM

November 16, 2013

Update! 18th November 2013. The launch of MAVEN – in about 1 hour from now – can be seen live on NASA TV.

The Indian Mars Orbiter Mission is primarily a test of technology and capability and self-confidence and self-belief.

With a very limited budget.

The scientific investigations of the planet and the Martian atmosphere are only a secondary or even a tertiary objective. For the Indian mission everything is virtually for the first time. For NASA and the US, the MAVEN mission which is due to launch on Monday 18th November is the 15th Mission to Mars. The first mission (Mariner 3) failed and the second mission, Mariner 4, launched in November 1964 was the first to reach Mars. In the 49 years since there have been a few failures (Mariner 8 in 1971, Mars Observer 1992, Mars Climate Orbiter in 1998 and the Mars Polar lander/Deep Space2 in 1999) and some spectacular successes for NASA with the Mars Global Surveyor in 1996 , the Phoenix Mars Lander in 2007 and the Mars Rover in 2011.

Many Mars missions have failed. Between 1960 and 1971 the Russians (USSR) failed in 11 attempts to send a spacecraft to the vicinity of Mars. The 12th attempt with M-71 in 1971 succeeded in orbiting Mars. Of eight further attempts by Russia, 4 failed to reach Mars. The Japanese Nozomi failed while cruising. Two European missions led to one orbiter (but a failed landing) and one flyby.

On the surface they may both seem to be similar in that both are attempting to get a spacecraft into orbit around Mars. But the missions are, in reality, quite different. MOM is essentially a first-time test of technology and capability whereas MAVEN is primarily a scientific mission utilising the deployment of now well proven US technology. Technology development on the one hand and a scientific investigation on the other.

1. NASA’s Mars Atmosphere and Volatile EvolutioN (MAVEN) is a space probe designed to study the Martian atmosphere while orbiting MarsIndia’s Mars Orbiter Mission (MOM – “Mangalyaan”) is a space probe designed to explore Mars’ surface features, morphology, mineralogy and Martian atmosphere using indigenous scientific instruments while orbiting Mars.

2. MAVEN is expected to have a budget of about $672 million. MOM has a budget of about $70 million.

3. The Atlas 5 rocket to be used to launch MAVEN has the capability to lift about 7,000 kg directly into a Geostationary transfer orbit (GTO). This allows MAVEN (2500 kg) to be injected directly into a Trans-Mars trajectory from launch.

The PSLV to be used for MOM can lift about 1300 kg into a GTO. With the MOM having a mass of 1337 kg, it becomes necessary for a  launch first into earth orbit and then a multi-step transition  through ever increasing earth orbits and finally into a Trans-Mars trajectory.

4. MAVEN is due to launch on an Atlas 5 rocket at 1:28 p.m. EST (1828 GMT) on Monday (Nov. 18) from Florida’s Cape Canaveral Air Force Station. Within one hour of launch MAVEN will be in a Hohmann Transfer Orbit with periapsis at Earth’s orbit and apoapsis at the distance of the orbit of Mars. MAVEN should reach Mars orbit on 22nd September 2014.

MAVEN trajectory - NASA-LASP-JPL

MAVEN trajectory – NASA-LASP-JPL

Because of the relatively low payload capability of the PSLV for an interplanetary mission MOM will spend more than four weeks in earth orbit and has to be equipped with radiation shielding to endure the numerous passages through earth’s radiation Belts. MOM has fired its Liquid Motor six times – always when passing perigee to gradually increase the apogee of the orbit to work its way up to departing Earth orbit in a fuel-efficient manner. The sixth (including one correction) firing yesterday placed the spacecraft in a 600 by approx 193,000 kilometer orbit around Earth and sets up the proper perigee passage for the final engine burn that puts the vehicle onto its Trans-Martian Trajectory using s standard Hohmann Transfer Orbit on 30th November/ 1st December. MOM should reach Mars orbit on 24th September 2014 (2 days after MAVEN).

mangalyaan trajectory

mangalyaan trajectory

5. MAVEN’s body has a cubical shape of about 2.3 m x 2.3 m x 2 m high, spans a total of 11.4 m with its solar panels deployed and has a lift-off mass of  2,454 kg (including fuel) and has a dry payload of 903 kg.

Mangalyaan’s body is a cuboid measuring about 1.5 m per side, a span of 4.2 m with solar panels deployed and an initial mass of 1337 kg of which 852 kg is fuel.

MAVEN - MOM (NASA- ISRO)

MAVEN – MOM (NASA- ISRO)

6. MAVEN is carrying 8 main, highly sophisticated instruments. Neutral Gas and Ion Mass SpectrometerImaging Ultraviolet SpectrographMagnetometerSolar Wind Electron AnalyzerSupraThermal And Thermal Ion CompositionLangmuir Probe and Waves antennaSolar Energetic ParticlesSolar Wind Ion Analyzer

Mangalyaan is carrying a camera, two spectrometers, a radiometer and a photometer. Together, they have a weight of about 15 kg.

7. MAVEN is targeting a science orbit of 150 by 6,200 Kilometers at an inclination of 75 degrees. It will perform measurements from a highly elliptical orbit around Mars over a period of one Earth year, with five “deep dips” at 150 km minimum altitude to sample the upper atmosphere.

Mangalyaan will be much further out and targets an operational orbit of 365 by 80,000 Kilometers with an inclination of 150 degrees and a duration of 76.72 hours from where it will perform its science mission. The MOM mission in Mars orbit is open-ended and is expected to last about 160 days.

8. MAVEN’s science phase features regular communication sessions. The spacecraft points its High Gain Antenna at Earth for high data rate communications twice per week with the exact timing depending on Deep Space Network visibility. Those comm sessions take place on Tuesday and Friday and have a duration of eight hours during which at least five hours of Earth pointing are required to downlink all science data and housekeeping telemetry. 

Mangalyaan is equipped with a 2.2-meter diameter High Gain Antenna which is a parabolic X-Band reflector antenna that is used for data downlink and command uplink. Science data and spacecraft telemetry is stored in two 16Gb Solid State Recorders aboard the vehicle for downlink during regular communications sessions. Low and Medium Gain Antennas are used for low-bandwidth communications such as command uplink and systems telemetry downlink.

As missions go, MAVEN represents a Mercedes “S” class to the Volkswagen that is MOM.

Mangalyaan - MOM (ISRO)

Mangalyaan – MOM (ISRO)

Sources: 

http://www.spaceflight101.com/

http://www.spaceflight101.com/mars-orbiter-mission.html

http://www.spaceflight101.com/maven-mission-profile.html

http://www.nasa.gov/missions/index.html#.UodLu8SkoYE

http://www.space.com/

http://www.isro.org/mars/home.aspx

Frugal engineering for India’s Mars mission

November 6, 2013

India has been struggling to bridge the gap to more developed nations without necessarily having to follow exactly the same path as that followed by other nations. Especially to achieve the development objectives in less time than it has taken those who did it first. Doing more with less is the name of the game and “Frugal engineering” (or “frugal innovation”) is defining a new paradigm for development.

There may perhaps not be any better example of the dictum that necessity is the mother of invention than can be found in India. Whether it is a refrigerator, ECG device or an automobile, Indian engineers have brought innovative products to market by designing them outside-in. …….

It may seem a contradiction, but some infrastructure gaps in India have positively affected Indian innovation: they have forced entrepreneurs and companies to adopt technologies that make relying on existing infrastructure (creaking and unreliable as it is in many ways) simply irrelevant. Indian engineers have invented a battery-powered, ultra-low-cost refrigerator resistant to power cuts; an automatic teller machine for rural areas; and even a flour mill powered by a scooter. People in the West, with its constant access to electricity, have little motivation to pursue such innovations. The Indian mobile phone industry is the poster child for leapfrogging over infrastructural constraints. A limited fixed-line infrastructure created an opportunity for mobile phones to reach many more people. Mobile telephony is also relatively cheap, sharable, and easily repaired. And thus, a new frontier of global innovation opened in India. …… 

The Indian mission to Mars which launched yesterday is another example of frugal engineering at work.

Hindustan Times:

India’s successful Mangalyaan launch is as much a financial accomplishment as a technical milestone. The entire Mars mission has cost the Indian Space Research Organisation a mere around Rs. 450 crore ($75 million) and took 15 months to put together. Much of the Martian price tag is for ground stations and relay upgrades that will be used for other Isro projects. The actual satellite costs a mere $25 million ( Rs. 153 crore), says Pallav Bagla of Science magazine. Comparison: Nasa’s similar MAVEN Mars project will cost 10 times more and will take three times longer.

Isro is widely cited as an example of “frugal engineering” …..  A US state department scientific adviser once said that Isro had reduced satellite assembly costs to a tenth of Nasa’s.

Isro’s accomplishments are remarkable given its tiny budget: $700 million ( Rs. 4,270 crore) in 2012-13. Despite a space programme whose financial base is the ninth largest, India is generally rated the world’s number six space power.

Of this, only 7% is allotted for planetary exploration. Isro’s prime directive has and continues to be the finding of technical means to support socio-economic goals such as education, medicine, water and disaster management.

Isro also defrays government support through a commercial arm, Antrix. Through the sale of satellite imagery, satellite launches and so on, Antrix earned a pre-tax Rs. 2 billion in 2010 alone. …..


%d bloggers like this: