Posts Tagged ‘VEI 5’

Nostradamus had nothing to say about 2016, but a VEI 5+ volcano eruption is very probable

December 31, 2015

Apart from for 1999, which is specifically mentioned in one of Nostradamus’ quatrains, there is nothing he had to say which can be specifically attributed to 2016. Moreover, not only did the King of Terror he foresaw for the seventh month of 1999 not appear, but there was no event at that time which came anywhere near to his prediction.

So the coming of WW III or of the next anti-Christ or a new invasion of Europe from the Asian steppes in 2016, as many of the Nostradamus brigade are now predicting, are not actually with any foundation. And even if they were, Nostradamus interpretations have a remarkably poor record in forecasts (but a very good record for hindcasts).

Quatrain X-72:

The year 1999, seventh month,

From the sky will come a great King of Terror:

To bring back to life the great King of the Mongols,

Before and after Mars to reign by good luck.

Depending upon calendar, the seventh month refers to July or September. During that period NATO was conducting a local air-war in Serbia and the Russians were battling rebels in Chechnya. But there was little else to match a King of Terror or a new King of the Mongols.

But I do see a high probability of a natural catastrophe during 2016.

The last 25 years have been a remarkably quiet time for major volcanic eruptions. But 2016 may well see a major VEI 5+ volcano eruption, which is now very long overdue. The Puyehue-Cordón Caulle eruption of 2012 is sometimes stated to be of strength VEI 5, but it seems more likely it was no more than a VEI 4. The last VEI 5+ eruptions were in 1991 (Mt. Pinatubo and Mt. Hudson) and that is 25 years ago. Through the 20th century, VEI 5+ eruptions occurred on an average every 7 years (max gap 23 years) and every 11 years during the 19th century. So for 2016, there is a high probability of a major volcanic eruption. Of course, the Ring of Fire is where this is most likely to occur. But my hunch is that the next major eruption could be in the Northern hemisphere. In which case the Mediterranean or Iceland come into the picture.

Ring of Fire image from http://volcanoespaster.weebly.com/

Ring of Fire image from volcanoespaster.weebly.com

I note in passing that the earth’s magnetic field continues to weaken and the poles continue to drift. It is not inconceivable that another rapid magnetic reversal event such as the Laschamp event is currently underway. Reversal of the geomagnetic field occur regularly, but slowly, over geologic time periods. The Laschamp event however occurred very rapidly with the magnetic North Pole drifting to the Antarctic and back again over some 500 years.

Phys.org: 41,000 years ago, a complete and rapid reversal of the geomagnetic field occured. ……. What is remarkable is the speed of the reversal: “The field geometry of reversed polarity, with field lines pointing into the opposite direction when compared to today’s configuration, lasted for only about 440 years, and it was associated with a field strength that was only one quarter of today’s field,” explains Norbert Nowaczyk. “The actual polarity changes lasted only 250 years. In terms of geological time scales, that is very fast.” During this period, the field was even weaker, with only 5% of today’s field strength. As a consequence, the Earth nearly completely lost its protection shield against hard cosmic rays, leading to a significantly increased radiation exposure.

Two other events of note occurred simultaneously – though that may just be coincidence. Forty thousand years ago is close to the time when the Neanderthals disappeared as a separate species and continued only as those absorbed within modern humans. It was also the time when the supervolcano (VEI 7+) erupted 39400 years ago in the area of today’s Phlegraean Fields (Campi Flegrei) near Naples. It was the largest volcanic eruption on the Northern hemisphere in the past 100 000 years.

The polarity reversal was a global event. © Dr. habil. Norbert R. Nowaczyk / GFZ

The magnetic poles are already a long way away from the geographic poles. The South magnetic pole in particular is already outside the polar circle.

NOAA: The most recent survey determined that the Pole is moving approximately north-northwest at 55 km per year.

Currently, in 2015 the location of the north magnetic pole is 86.27°N and 159.18°W and the south magnetic pole is 64.26°S and 136.59°E.

Pole reversal is not a catastrophic event in itself. Even with a weak magnetic field, the atmosphere provides good protection against radiation and the effects would probably not be catastrophic. But the indirect effects of changing flow patterns in the earth’s core (which might be the cause of geomagnetic reversal), on tectonics, volcanic activity and climate may be much more profound. My gut tells me that that the releases of energy which accompany major earthquakes and volcanic eruptions can only be explained by the flow patterns in the earth’s core which power the movement of the tectonic plates – and also control the earth’s magnetic field.

If last year the probability of a VEI 5+ eruption was said to be 95% over the next 5 years, then the chances of a major eruption in 2016 are now quite high.

Advertisements

Probability of a VEI 5+ volcanic eruption within 5 years is over 95%

April 16, 2015

It has been 24 years since the last VEI 5+ (Mount Pinatubo, 1991, VEI 6) occurred and the probability that a VEI 5+ volcanic eruption will occur within the next 5 years is now over 95%. There are around 10 – 14 VEI 5+ eruptions every hundred years and for the the last 300 years the time between eruptions has been as short as 1 year and as long as 23 years. The current gap could be the longest recorded in three centuries. There are, on average, 2 eruptions of intensity 6 every hundred years and so the probability that an eruption of VEI 6 could occur within 5 years is about 50% (current gap 24 years, average gap 50 years). That a supervolcanic eruption of VEI 7 or greater could occur within the next 5 years is less than 1%.

The next VEI 5+ volcanic eruption is overdue During the 19th century VEI eruptions of 5 or greater occurred every 11 years on average with the Krakatoa eruption being the greatest at VEI 6 in 1883. Through the 20th century, an eruption of intensity 5 or greater came at intervals varying from 1 year upto 23 years with an average interval of just under 7 years. The Novarupta (1912) and Mount Pinatubo (1991) eruptions were the two classified at VEI6. 

  • 1902 Santa Maria
  • 1907 Kudach
  • 1912 Novarupta
  • 1913 Colima
  • 1918 Katla
  • 1932 Cerro Azul
  • 1933 Kharimkotan
  • 1956 Bezymianny
  • 1963 Mount Agung
  • 1980 Mount St. Helens
  • 1982 El Chichón
  • 1991 Mount Pinatubo
  • 1991 Mount Hudson
vei eruption balls image geology.com

vei eruption balls image geology.com

So far in this century the 2010 Eyjafjallajökull eruption in Iceland “only” reached a VEI intensity of 4. The Puyehue-Cordón Caulle eruption in 2011 was judged – by some – to be of intensity 5 was really just a VEI 4. The 2012 Mt. Etna eruption was rated a 3+.

Classification of eruptions esf.org

Classification of eruptions esf.org

The impact of the next eruption has to be assessed in a short and a long-term perspective. Immediate loss of life and property is primarily a function of population in the area of the eruption and the time available for evacuation. Populations are higher now than ever in the past but warnings come earlier and possibilities for evacuation are better than ever before.  The population directly at risk from volcanoes in the year 2000 has been estimated at 500 million or more, The long-term impacts could be much more profound and independent of the location of the eruption. We are already into an ocean- current led global cooling cycle. We could well have another year or two without a summer after the next VEI 5+ eruption. The key will be the extent of the dust cloud, the altitude it reaches and for how long it persists. It will not be a Toba like cataclysm which affected the evolution of humans, but it may well be the impulse which drives the earth into an Ice Age. It could even be the start of a 1000 years of transition back into a Glacial Age since the current Interglacial has been around for some 15,000 years.

Extreme Geohazards: Reducing the Disaster Risk and Increasing Resilience VEI values have been determined for more than 5,000 eruptions in the Holocene…. None of these reached the maximum VEI of 8. Several of the most devastating eruptions during the last 2,000 years had VEI values lower than 6. For example, the VEI 5 eruption of Vesuvius in 79 AD destroyed Pompeii and Herculaneum. Since 1500, more than 20 eruptions of VEI 5 or more occurred, with only the Tambora eruption in 1815 reaching VEI 7. It is worth noting that the extremely disruptive eruption of Eyjafjallajökull only reached an estimated VEI of between 3 and 4. …… The size and magnitude of …. the eruption, is only loosely related to the resulting damage. For example, mudflows triggered by the VEI 3 eruption of Nevado del Ruiz (Colombia) in 1985 caused one of the worst volcanic disaster in the 20th century. …… of the nine greatest volcanic disasters in terms of casualties since 1500, only three (Tambora, Krakatau and Laki) qualify as ‘very large’ eruptions with a VEI of greater than 5. ….. during the past 36 Ma, 42 VEI 8 eruptions have been identified. The authors indicate that these eruptions are not evenly distributed in time but seem to cluster in two pulses over the past 36 Ma. Periods with as many as 22 events/Ma and down to 1.4 event/Ma have been identified. More recent examples are the eruptions of Taupo (around 24,000 BC), Toba (around 74,000 BC), and Yellowstone (around 640,000 BC), for which the impacts have been studied in detail. More recent large eruptions with a VEI of 5, 6 or 7 include Thera (≈1630 BC), Vesuvius (79 AD), Laki (1783), Tambora (1815), Krakatau (1883), Novarupta (1912) and Pinatubo (1991). Each of these eruptions (except Novarupta, due to the remoteness of the area) generated immediate loss of life and structures at local distances (through the generation of pyroclastic flows, ash and gas emissions, tsunamis) as well as long-term losses at regional and global distances. These eruptions impacted the climate for long periods by injecting ash in the stratosphere at high altitudes (Tambora’s ash column height reached 43 km) and triggering temperature changes which heavily impacted the harvest and led to famine and epidemics in several areas of the planet: the year 1816, following Tambora’s eruption, is recalled as ‘the year without summer’, and generated abnormal temperatures in China, Europe and North America. 

The hypotheses about man made global warming are neither predictable or measurable and are just fancies. But volcanic eruptions are neither fanciful nor amenable to prediction. They will occur and we have no means of preventing them. Within 5 years it is close to a certainty (> 95%) that a VEI 5+ volcanic eruption will occur. With global mobilisation loss of life can be minimised but the effects of the eruption on climate will just have to be endured.

5 km radius around Mount Sinabung volcano evacuated as eruptions continue

January 13, 2014

Mount Sinabung keeps rumbling on – and more than just rumbling as eruptions with material ejected upto 5,000m and lava flows are observed. Around 25,000 people have been evacuated for 5km surrounding the volcano and the authorities are urging those within a 7km radius to leave.

JakartaGlobe:More than 25,000 people have fled their homes following a series of eruptions and lava flows from Mount Sinabung volcano, an official said Sunday. Mount Sinabung in North Sumatra sent hot rocks and ash up to 5,000 meters (16,000 feet) in the air “several times” on Saturday, National Disaster Mitigation Agency emergency response director Tri Budiarto told AFP.

“So far, 25,516 people have been evacuated. There’s nobody now within a five-kilometer [three-mile] radius of the crater. We are urging those living within seven kilometers southeast of the crater to move too,” he added. Hot lava, which has been spewing from the volcano for the past two weeks, has flowed into a river and filled up valleys with pyroclastic material, he said.

“There were small secondary explosions when lava flows came into contact with the water, but there are no casualties so far. We are urging people not to carry out any activity in the rivers,” he added.

Mount Sinabung is one of 129 active volcanoes in Indonesia that straddle major tectonic fault lines, known as the Pacific Ring of Fire. It had been quiet for around 400 years until it rumbled back to life in 2010, and again in September last year.

During the 19th century there were volcano eruptions having a Volcanic Explosivity Index (VEI) of 5 or greater on average every 11 years. During the 20th century the average was 7 years with the greatest interval between VEI5 eruptions being 23 years. The last VEI5 eruption was in 1991 and now – 22 years on – a VEI5 eruption is overdue.

Mount Sinabung started its rumblings back in September 2013 and it may be that the continuing small eruptions relieve sufficient pressure to prevent a VEI5+ eruption. But the odds that the next VEI5 eruption occurs in or around Indonesia is still quite high – and it could be that Sinabung is just bubbling up to be a major eruption. However the eruptions are being monitored so closely that any such imminent eruption will probably be detected early enough to get most people out of harms way.

Mount Sinabung Indonesia - Google Maps

Mount Sinabung Indonesia – Google Maps


%d bloggers like this: