Posts Tagged ‘batteries’

Going nuclear for a nanowatt battery life of 20+ years

February 28, 2014

Tritium batteries are now available commercially and can have a life exceeding 20 years (Tritium has a half-life of 12.3 years). These thumb-size batteries can produce enough nanowatt (1 nW = 10−9 watt) power to keep micro-electronics going. An 8-bit PIC microcontroller chip when in “sleep” mode consumes around 10 nW. The cost is still in thousands of Dollars but should come down fast. It appears that they could be scaled up to the microwatt (1 µW = 10−6 watt) range which would be enough to power a wristwatch.

Commercial nanoTritium battery by City Labs

Commercial nanoTritium battery by City Labs

Tritium (symbol T or 3H, also known as hydrogen-3) is a radioactive isotope of hydrogen. The nucleusof tritium (sometimes called a triton) contains one proton and two neutrons, whereas the nucleus of protium (by far the most abundant hydrogen isotope) contains one proton and no neutrons. Naturally occurring tritium is extremely rare on Earth, where trace amounts are formed by the interaction of the atmosphere with cosmic rays. The name of this isotope is formed from the Greek word “tritos” meaning “third”.

Tritium is produced in nuclear reactors by neutron activation of lithium-6. This is possible with neutrons of any energy, and is an exothermic reaction yielding 4.8 MeV. In comparison, the fusion of deuterium with tritium releases about 17.6 MeV of energy. High-energy neutrons can also produce tritium from lithium-7 in an endothermic reaction, consuming 2.466 MeV. This was discovered when the 1954 Castle Bravo nuclear test produced an unexpectedly high yield.

Gizmag reports:

(Tritium) although occurring naturally in the upper atmosphere, it’s also produced commercially in nuclear reactors and used in such self-luminescent products as aircraft dials, gauges, luminous paints, exit signs in buildings and wristwatches. It’s also considered a relatively benign betavoltaic, providing a continuous flow of low-powered electrons for a good many years.

According to the Environmental Protection Agency, tritium has a half-life of 12.3 years and the Model P100a NanoTritium betavoltaic power source from Toronto’s City Labs is claimed to be capable of providing juice to low-power micro-electronic and sensor applications for over 20 years. It’s described as robust and hermetically sealed, and the tritium is incorporated in solid form.

Independent testing undertaken by Lockheed Martin during an industry-wide survey also found the technology to be resistant to broad temperature extremes (-50° C to 150° C/-58° F to 302° F), as well as extreme vibration and altitude.

Examples of possible applications for the technology offered by City Labs include environmental pressure/temperature sensors, intelligence sensors, medical implants, trickle charging lithium batteries, semi-passive and active RFID tags, deep space probes, silicon clocks, SRAM memory backup, deep-sea oil well electronics, and lower power processors.

It is still a long way from microwatts to the kilowatts needed to power a home or to drive electric vehicles and the Megawatts needed for small scale power generation. Central power generation requires Gigawatts.

It is easier to convert nuclear radiation into heat and only some materials are betavoltaics which generate current. If only all low-grade radioactive waste from nuclear plants could be converted into batteries! Perhaps nuclear batteries are the breakthrough that electric cars are waiting for!! With current battery technology they are not going anywhere very fast.

Graphene Ultracapacitors

September 27, 2010

Graphene is very much the material of the moment.

But graphene actually dates back to 1961. Hanns-Peter Boehm and coauthors Clauss, Fischer, and Hofmann isolated and identified single graphene sheets by transmission electron microscopy (TEM) and X-ray diffraction in 1961 and authored the IUPAC (International Union of Pure and Applied Chemistry) report formally defining the term graphene in 1994. He must have been surprised to learn of its discovery in 2004.

Graphene is a flat monolayer of carbon atoms tightly packed into a two-dimensional (2D) honeycomb lattice, and is a basic building block for graphitic materials of all other dimensionalities. It can be wrapped up into 0D fullerenes, rolled into 1D nanotubes or stacked into 3D graphite.

“Electrons in graphene, obeying a linear dispersion relation, behave like massless relativistic particles. This results in the observation of a number of very peculiar electronic properties – from an anomalous quantum Hall effect to the absence of localization – in this, the first two-dimensional material. It also provides a bridge between condensed matter physics and quantum electrodynamics, and opens new perspectives for carbon-based electronics.” (M.I. Katsnelson)

Properties of graphene are still being discovered and are leading to new studies of relativity and a wave of potential applications in physics, electronics, chemistry and biology (transistors, gas molecule detection, nano-ribbons, nano-tubes, bio-devices and transparent electrodes).

graphene-structure

graphene-structure:www.thp.uni-koeln.de/graphene08/

The IEEE reports that the ultracapacitor—the battery’s quicker cousin—just got faster and may one day help make portable electronics a lot smaller and lighter.  John Miller, president of the electrochemical capacitor company JME, in Shaker Heights, Ohio, and his team reported the new ultracapacitor design this week in Science.

Ultracapacitors don’t store quite as much charge as batteries but can charge and discharge in seconds rather than the minutes batteries take. Using nanometer-scale fins of graphene, the researchers built an ultracapacitor that can charge in less than a millisecond. This agility, its designers say, means that the devices could replace the ubiquitous bulky capacitors that smooth out the ripples in power supplies to free up precious space in gadgets and computers.

ultracapacitor cell: venturebeat.com

One team member, Ron Outlaw, a material scientist at the College of William and Mary, in Williamsburg, Va., came up with an electrode consisting of up to 4 sheets of graphene —a one-atom-thick form of carbon with unusual electronic properties. The graphene was formed so that it stuck out vertically from a 10-nanometer-thick graphite base layer.

Miller’s team, which also included Brian Holloway, a program manager at the Defense Advanced Research Projects Agency (DARPA), tested its graphene ultracapacitor in a filtering circuit, part of an AC rectifier. Many rectifiers leave a slight AC echo behind, called a “voltage ripple,” and it’s the capacitor’s job to smooth it out. In order to do that, the capacitor needs to respond well at double the AC frequency—120 hertz in the United States. Most commercial ultracapacitors fail at this filtering role at around 0.01 Hz, but when Miller’s team tested its ultracapacitor in such a 120-Hz filtering circuit, it did the job. That means the smaller ultracapacitors could replace the big electrolytic capacitors that do the filtering now. Miller estimates that a commercial version, operating at 2.5 volts, could be less that one-sixth the size of any other 120-Hz filtering technology.

But even if graphene proves to be more promising than carbon nanotubes, silicon isn’t going away anytime soon.