Posts Tagged ‘Materials’

From graphene to borophene

January 29, 2014

Technology development waves

The discovery of graphene is leading to a new excitement in materials research. I have a notion that technology advances take place in step waves, where each step is both enabled and constrained by the materials available. Each time a new material (or material family is discovered), technology development starts very fast and then tapers off until another material comes along and ignites a new development wave.

Boron is Carbon’s neighbour in the periodic table and the discovery of graphene has ignited studies to see if a similar variation of boron would be possible.

Boron is a Group 13 element that has properties which are borderline between metals and non-metals (semimetallic). It is a semiconductor rather than a metallic conductor. Chemically it is closer to silicon than to aluminium, gallium, indium, and thallium. Crystalline boron is inert chemically and is resistant to attack by boiling HF or HCl. When finely divided it is attacked slowly by hot concentrated nitric acid.

Boron, Symbol: B, Atomic number: 5, Atomic weight: 10.811, solid at 298 K

“Boron has one fewer electron than carbon and as a result can’t form the honeycomb lattice that makes up graphene. For boron to form a single-atom layer, theorists suggested that the atoms must be arranged in a triangular lattice with hexagonal vacancies — holes — in the lattice.”

A new paper shows that borophene is possible – now it just has to be made!

Zachary A. Piazza, Han-Shi Hu, Wei-Li Li, Ya-Fan Zhao, Jun Li, Lai-Sheng Wang.Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheetsNature Communications, 2014; 5 DOI: 10.1038/ncomms4113

Brown University Press Release:

Unlocking the secrets of the B36 cluster
A 36-atom cluster of boron, left, arranged as a flat disc with a hexagonal hole in the middle, fits the theoretical requirements for making a one-atom-thick boron sheet, right, a theoretical nanomaterial dubbed “borophene.” Credit: Wang lab/Brown University

Graphene, a sheet of carbon one atom thick, may soon have a new nanomaterial partner. In the lab and on supercomputers, chemical engineers have determined that a unique arrangement of 36 boron atoms in a flat disc with a hexagonal hole in the middle may be the preferred building blocks for “borophene.”

Researchers from Brown University have shown experimentally that a boron-based competitor to graphene is a very real possibility.

Lai-Sheng Wang, professor of chemistry at Brown and his research group, which has studied boron chemistry for many years, have now produced the first experimental evidence that such a structure is possible. In a paper published on January 20 in Nature Communications, Wang and his team showed that a cluster made of 36 boron atoms (B36) forms a symmetrical, one-atom thick disc with a perfect hexagonal hole in the middle.

“It’s beautiful,” Wang said. “It has exact hexagonal symmetry with the hexagonal hole we were looking for. The hole is of real significance here. It suggests that this theoretical calculation about a boron planar structure might be right.”

It may be possible, Wang said, to use B36 basis to form an extended planar boron sheet. In other words, B36 may well be the embryo of a new nanomaterial that Wang and his team have dubbed “borophene.”

“We still only have one unit,” Wang said. “We haven’t made borophene yet, but this work suggests that this structure is more than just a calculation.” ……..

Wang’s experiments showed that the B36 cluster was something special. It had an extremely low electron binding energy compared to other boron clusters. The shape of the cluster’s binding spectrum also suggested that it was a symmetrical structure. ……..

…… That structure also fits the theoretical requirements for making borophene, which is an extremely interesting prospect, Wang said. The boron-boron bond is very strong, nearly as strong as the carbon-carbon bond. So borophene should be very strong. Its electrical properties may be even more interesting. Borophene is predicted to be fully metallic, whereas graphene is a semi-metal. That means borophene might end up being a better conductor than graphene.

“That is,” Wang cautions, “if anyone can make it.”

AbstractBoron is carbon’s neighbour in the periodic table and has similar valence orbitals. However, boron cannot form graphene-like structures with a honeycomb hexagonal framework because of its electron deficiency. Computational studies suggest that extended boron sheets with partially filled hexagonal holes are stable; however, there has been no experimental evidence for such atom-thin boron nanostructures. Here, we show experimentally and theoretically that B36 is a highly stable quasiplanar boron cluster with a central hexagonal hole, providing the first experimental evidence that single-atom layer boron sheets with hexagonal vacancies are potentially viable. Photoelectron spectroscopy of B36 reveals a relatively simple spectrum, suggesting a symmetric cluster. Global minimum searches for B36 lead to a quasiplanar structure with a central hexagonal hole. Neutral B36 is the smallest boron cluster to have sixfold symmetry and a perfect hexagonal vacancy, and it can be viewed as a potential basis for extended two-dimensional boron sheets.

No end to new materials with super-strength

October 10, 2013

From the days of the alchemists and then the metallurgists who mixed different materials – often in the molten state – and then to the chemists we have now moved into the age when materials are designed in the lab to have desired properties. The challenge then is to synthesise the desired composition with the atomic structure required and then to devise manufacturing processes for the materials.

“A material called carbyne could be stronger even than graphene or diamond, according to researchers who have calculated its properties”, reports the BBC.

Carbyne is a chain of carbon atoms held together by double or alternating single and triple chemical bonds.

In their paper, Boris Yakobson and colleagues from Rice University in Houston show that carbyne’s tensile strength – the ability to withstand stretching – surpasses that of “any other known material” and is double that of graphene, the flat sheet of carbon atoms that is often held up as a “supermaterial”.

They also calculated that carbyne has twice the tensile stiffness of graphene and carbon nanotubes and nearly three times that of diamond.

It should display a number of other useful properties say the researchers. For example, it could be turned into a magnetic semiconductor (these are materials with electrical conductivity between that of a metal and an insulator like glass) and could be used as a sensor to detect twisting.

Some scientists have reported synthesising small amounts of carbyne in the lab, but it was thought to be extremely unstable. And some chemists have suggested that two strands coming into contact could react explosively.

“Our intention was to put it all together, to construct a complete mechanical picture of carbyne as a material,” said Vasilii Artyukhov, also from Rice University.

“The fact that it has been observed tells us it’s stable under tension, at least, because otherwise it would just fall apart.”

Mingjie Liu , Vasilii I. Artyukhov , Hoonkyung Lee ,Fangbo Xu , and Boris I. Yakobson, Carbyne From First Principles: Chain of C atoms, a Nanorod or a Nanorope,

ACS Nano,  DOI: 10.1021/nn404177r, October 5, 2013

Abstract: We report an extensive study of the properties of carbyne using first-principles calculations. We investigate carbyne’s mechanical response to tension, bending, and torsion deformations. Under tension, carbyne is about twice as stiff as the stiffest known materials and has an unrivaled specific strength of up to 7.5×10^7 N∙m/kg, requiring a force of ~10 nN to break a single atomic chain. Carbyne has a fairly large room-temperature persistence length of about 14 nm. Surprisingly, the torsional stiffness of carbyne can be zero but can be ‘switched on’ by appropriate functional groups at the ends. Further, under appropriate termination, carbyne can be switched into a magnetic-semiconductor state by mechanical twisting. We reconstruct the equivalent continuum-elasticity representation, providing the full set of elastic moduli for carbyne, showing its extreme mechanical performance (e.g. a nominal Young’s modulus of 32.7 TPa with an effective mechanical thickness of 0.772 Å). We also find an interesting coupling between strain and band gap of carbyne, which is strongly increased under tension, from 3.2 to 4.4 eV under a 10% strain. Finally, we study the performance of carbyne as a nanoscale electrical cable, and estimate its chemical stability against self-aggregation, finding an activation barrier of 0.6 eV for the carbyne–carbyne cross-linking reaction and an equilibrium cross-link density for two parallel carbyne chains of 1 cross-link per 17 C atoms (2.2 nm).

Graphene Ultracapacitors

September 27, 2010

Graphene is very much the material of the moment.

But graphene actually dates back to 1961. Hanns-Peter Boehm and coauthors Clauss, Fischer, and Hofmann isolated and identified single graphene sheets by transmission electron microscopy (TEM) and X-ray diffraction in 1961 and authored the IUPAC (International Union of Pure and Applied Chemistry) report formally defining the term graphene in 1994. He must have been surprised to learn of its discovery in 2004.

Graphene is a flat monolayer of carbon atoms tightly packed into a two-dimensional (2D) honeycomb lattice, and is a basic building block for graphitic materials of all other dimensionalities. It can be wrapped up into 0D fullerenes, rolled into 1D nanotubes or stacked into 3D graphite.

“Electrons in graphene, obeying a linear dispersion relation, behave like massless relativistic particles. This results in the observation of a number of very peculiar electronic properties – from an anomalous quantum Hall effect to the absence of localization – in this, the first two-dimensional material. It also provides a bridge between condensed matter physics and quantum electrodynamics, and opens new perspectives for carbon-based electronics.” (M.I. Katsnelson)

Properties of graphene are still being discovered and are leading to new studies of relativity and a wave of potential applications in physics, electronics, chemistry and biology (transistors, gas molecule detection, nano-ribbons, nano-tubes, bio-devices and transparent electrodes).


The IEEE reports that the ultracapacitor—the battery’s quicker cousin—just got faster and may one day help make portable electronics a lot smaller and lighter.  John Miller, president of the electrochemical capacitor company JME, in Shaker Heights, Ohio, and his team reported the new ultracapacitor design this week in Science.

Ultracapacitors don’t store quite as much charge as batteries but can charge and discharge in seconds rather than the minutes batteries take. Using nanometer-scale fins of graphene, the researchers built an ultracapacitor that can charge in less than a millisecond. This agility, its designers say, means that the devices could replace the ubiquitous bulky capacitors that smooth out the ripples in power supplies to free up precious space in gadgets and computers.

ultracapacitor cell:

One team member, Ron Outlaw, a material scientist at the College of William and Mary, in Williamsburg, Va., came up with an electrode consisting of up to 4 sheets of graphene —a one-atom-thick form of carbon with unusual electronic properties. The graphene was formed so that it stuck out vertically from a 10-nanometer-thick graphite base layer.

Miller’s team, which also included Brian Holloway, a program manager at the Defense Advanced Research Projects Agency (DARPA), tested its graphene ultracapacitor in a filtering circuit, part of an AC rectifier. Many rectifiers leave a slight AC echo behind, called a “voltage ripple,” and it’s the capacitor’s job to smooth it out. In order to do that, the capacitor needs to respond well at double the AC frequency—120 hertz in the United States. Most commercial ultracapacitors fail at this filtering role at around 0.01 Hz, but when Miller’s team tested its ultracapacitor in such a 120-Hz filtering circuit, it did the job. That means the smaller ultracapacitors could replace the big electrolytic capacitors that do the filtering now. Miller estimates that a commercial version, operating at 2.5 volts, could be less that one-sixth the size of any other 120-Hz filtering technology.

But even if graphene proves to be more promising than carbon nanotubes, silicon isn’t going away anytime soon.

%d bloggers like this: