Posts Tagged ‘Frugal Engineering’

Culmination nears for India’s Mars Orbiter Mission

September 23, 2014

In 8 hours – if everything goes as planned – the MOM would have been inserted into Mars orbit of 423 km at periareion and 80,000 Kilometers at apoareion  at an inclination of 150 degrees and with an orbital period of a little more than three days. Though a number of experiments are planned, the most important objectives of the mission – to demonstrate technology and capability – will largely have been accomplished on getting into orbit.

Frugal engineering and with a cost of about 10% of that of NASA’s MAVEN will have taken ISRO’s MOM into Mars orbit – and at the first attempt.

But the next few hours will be tense and nervous not only for ISRO mission staff but for the many millions of Indians who will be following the live webcast at http://webcast.isro.gov.in/. The critical operations will take place while the MOM spacecraft is occluded on the far side of Mars and when signals will be taking over 12 minutes to reach earth.

Spaceflight101: 

The critical Mars Orbit Insertion Burn Sequence will begin three hours ahead of the planned maneuver time when the spacecraft automatically switches over to its Medium Gain Antenna for communications since the High Gain Antenna will be pointing away from Earth during the retrograde burn.
21 minutes ahead of ignition, the spacecraft will begin the re-orientation to the proper attitude for the burn, pointing LAM to the direction of travel. The re-orientation is accomplished using the vehicle’s Reaction Wheels. Five minutes and 13 seconds ahead of the burn, the spacecraft passes into darkness – for the first time since leaving Earth last year. In advance, MOM will fully charge its battery to be in a safe configuration for the eclipse.
Three minutes ahead of the burn, the vehicle’s eight 22-Newton thrusters are enabled to start providing attitude control which they will continue to do throughout the main engine burn, keeping MOM pointing forward. Ignition of the Liquid Apogee Motor is planned at 1:47:32 UTC on Wednesday, September 24, 7:17 Indian Standard Time. The Mars Orbit Insertion burn has a planned duration of 24 minutes and 14 seconds, slowing the spacecraft down by 1,098.7 meters per second to be captured in an elliptical orbit around Mars. During the burn, the engines will consume 249.5 Kilograms of propellant leaving only about 40 Kilograms of propellant for the rest of the mission.
Should something go wrong during the burn, MOM is programmed to react appropriately in order to achieve a stable orbit around Mars – even if that means to spend all the vehicle’s propellant to do so. In the event the Liquid Apogee Motor is not ignited or its burn is cut short, MOM would automatically switch to the 22-Newton thrusters to supply as much delta-v as possible. Due to their lower thrust, the 22N thrusters would need to fire much longer than LAM along a greater stretch around the periapsis pass which will increase propellant consumption and leave MOM in a higher orbit.
MOI timeline

Graphic ISRO (via spaceflight101)

Advertisements

100 days to Mars for ISRO’s Mangalyaan

June 16, 2014

Four days ago

  • The second Trajectory Correction Manoeuvre (TCM-2) of India’s Mars Orbiter Spacecraft was successfully performed on June 11, 2014 at 1630 hrs IST. TCM-2 was performed by firing the spacecraft’s 22 Newton thrusters for a duration of 16 seconds.
  • At present, the radio distance between the Spacecraft and the Earth is 102 million km. A radio signal from the Earth to the Spacecraft now takes about 340 seconds. The spacecraft so far has traveled a distance of 466 million km as part of its total Journey of 680 million km.
  • ISRO is continuously monitoring Mars Orbiter Spacecraft using Indian Deep Space Network (IDSN). The spacecraft and its five scientific instruments are in good health.

And 100 days from today on 24th September, ISRO’s frugally engineered  Mars Orbiter Mission (called Mangalyaan meaning Mars craft) should be inserted into Mars orbit. The highly over-rated movie “Gravity” had a larger budget at $100 million than ISRO’s $75 million for its Mars mission.

Political statues in India cost more than the Mars Orbiter Mission

November 24, 2013

A very critical moment for the Indian Mars Orbiter Mission (Mangalyaan) comes a week from today when the spacecraft’s engine has to be fired as it reaches perigee in its Earth orbit, to insert  it into  a trajectory to reach Mars some 10 months later.

The Mission has been criticised both in the West and in India (here and here for example) as being too expensive, too elitist and the wrong priority for a developing country like India. I think such criticism misses the point. The Indian Mars Orbiter Mission is primarily a test of technology and capability and self-confidence and self-belief”. The cost pales in comparison with the spend on religious festivities and what other much less productive projects can cost. As an example of what frugal engineering can achieve, the inspiration and ingenuity it can foster is immeasurable.

Manoj KumarPatairiya writes in the New York Times:

If the Mars Orbiter successfully reaches the vicinity of the planet in September 2014, after 300 days’ journey into deep space, it will make India the first Asian country and the fourth in the world to reach the red planet. …. The mission has, however, started an intense debate. While its supporters trumpet its incredibly low cost of around $75 million (a fraction of the cost of a similar American expedition), critics question the logic behind spending any amount when India is dealing with such deep-rooted problems as widespread hunger, poverty and corruption. ……. 

But U. R. Rao, a former chairman of the Indian Space Research Organization, compared the $75 million spent on the mission to the amount Indians spend on Diwali crackers for one day: “For going all the way to Mars, just one-tenth of the money is being spent. So, why are they shouting?”

Part of the reason the mission is so much less expensive is that it is able to take advantage of existing deep space communications systems and navigation support from NASA. But India is becoming known for its low-cost innovations in many diverse fields, including health care, renewable energy, sanitation, mobile technology and tablet computers. Indian scientists like to share this anecdote: “Americans spent millions to develop a pen that will not leak in space, whereas Russians used a pencil!”

The cost of the Indian Mars mission is about $75 million and just to put it into perspective:

  • Mayawati’s park in Noida was constructed at the cost of $130 million, and has 24 huge statues of elephants, and one of herself.
  • the total cost to build the Narendra Modi sponsored “Statue of Unity” is estimated to be about $340 million

Politicians will of course argue that the “feel-good” effects generated by such monuments to themselves or their heroes are well worth the cost!

If the MOM succeeds in its main objectives, there is even a case for using the window that is coming in 2018 to attempt a manned trip around Mars and back in 501 days.

India’s frugal Mars orbiter mission completes 3rd burn in earth orbit

November 9, 2013

There has been some criticism  (within and outside India) from the usual suspects about the frugally-engineered, Indian, Mangalyaan Mars Orbiter mission as “being too expensive” for a developing country like India. I tend to discount these voices which merely continue the long, retrograde and shameful tradition of the Luddites. Some of these voices are of those who would like humankind to return to the trees. Others are of those who feel threatened by the idea of “backward nations” moving into space.

Reaching Mars is not that easy. More missions have failed than have succeeded. The full list of Mars missions is here. There are many crucial steps left for the Mangalyaan mission to achieve and success is far from assured.

TOI: India’s Mars Rover Mission (MOM) named ‘Mangalyaan’ is the 42nd mission aimed at understanding Mars. Out of the 41 missions so far, 25 have been declared failures and only 16 have been a success. Even the latest Phobos-Grunt/Yinghuo-1 launched by Russia/China was a failure as it got stranded in the earth’s orbit. 

Close on the heels of ‘Mangalyaan’ being sent into space by India, the United States (US) is also gearing up for the MAVEN mission to be launched on November 18, 2013. The mission is intended to be a step towards ‘unravelling the planetary puzzle about Mars’. The US is also gearing up for the Mars Rover 2020 mission to understand ‘Martian atmosphere’.

Underlying all missions is the vision of Mars one day being inhabited by humans. And that vision transcends the petty and mean criticism of those who can only see a “glass half empty”.

Last night the 3rd of five rocket burns was completed to lift the earth orbit of Mangalyaan from 40,186 km to 71,636 km (apogee). The fourth and fifth burns are planned for November 11th and 16th to raise the apogee to 100,000 km and then to 192,000 km. The 6th burn will be to leave Earth’s orbit and  insert the spacecraft into a trajectory towards Mars. The Trans-Mars injection is expected around 12.42 AM on December 1st.

ISRO: The third orbit raising manoeuvre of Mars Orbiter Spacecraft, starting at 02:10:43 hrs(IST) on Nov 09, 2013, with a burn time of 707 seconds has been successfully completed. The observed change in Apogee is from 40186km to 71636km.

ISRO’s Mission Profile.

The Launch Vehicle – PSLV-C25 will inject the Spacecraft into an Elliptical Parking Orbit with a perigee of 250 km and an apogee of 23,500 km. With six Liquid Engine firing, the spacecraft is gradually maneuvered into a hyperbolic trajectory with which it escapes from the Earth’s Sphere of Influence (SOI) and arrives at the Mars Sphere of Influence. When spacecraft reaches nearest point of Mars (Peri-apsis), it is maneuvered in to an elliptical orbit around Mars by firing the Liquid Engine. The spacecraft then moves around the Mars in an orbit with Peri-apsis of 366 km and Apo-apsis of about 80000 km. 

The mission consists of following three phases:

1. Geo Centric Phase
The spacecraft is injected into an Elliptic Parking Orbit by the launcher. With six main engine burns, the spacecraft is gradually maneuvered into a departure hyperbolic trajectory with which it escapes from the Earth’s Sphere of Influence (SOI) with Earth’s orbital velocity + V boost. The SOI of earth ends at 918347 km from the surface of the earth beyond which the perturbing force on the orbiter is mainly due to the Sun. One primary concern is how to get the spacecraft to Mars, on the least amount of fuel. ISRO uses a method of travel called a Hohmann Transfer Orbit – or a Minimum Energy Transfer Orbit – to send a spacecraft from Earth to Mars with the least amount of fuel possible. 

2. Helio Centric Phase
The spacecraft leaves Earth in a direction tangential to Earth’s orbit and encounters Mars tangentially to its orbit. The flight path is roughly one half of an ellipse around sun. Eventually it will intersect the orbit of Mars at the exact moment when Mars is there too. This trajectory becomes possible with certain allowances when the relative position of Earth, Mars and Sun form an angle of approximately 44o. Such an arrangement recur periodically at intervals of about 780 days. Minimum energy opportunities for Earth-Mars occur in November 2013, January 2016, May 2018 etc. 

3. Martian Phase
The spacecraft arrives at the Mars Sphere of Influence (around 573473 km from the surface of Mars) in a hyperbolic trajectory. At the time the spacecraft reaches the closest approach to Mars (Periapsis), it is captured into planned orbit around mars by imparting ∆V retro which is called the Mars Orbit Insertion (MOI) manoeuvre. The Earth-Mars trajectory is shown in the above figure. ISRO plans to launch the Mars Orbiter Mission during the November 2013 window utilizing minimum energy transfer opportunity.

Frugal engineering for India’s Mars mission

November 6, 2013

India has been struggling to bridge the gap to more developed nations without necessarily having to follow exactly the same path as that followed by other nations. Especially to achieve the development objectives in less time than it has taken those who did it first. Doing more with less is the name of the game and “Frugal engineering” (or “frugal innovation”) is defining a new paradigm for development.

There may perhaps not be any better example of the dictum that necessity is the mother of invention than can be found in India. Whether it is a refrigerator, ECG device or an automobile, Indian engineers have brought innovative products to market by designing them outside-in. …….

It may seem a contradiction, but some infrastructure gaps in India have positively affected Indian innovation: they have forced entrepreneurs and companies to adopt technologies that make relying on existing infrastructure (creaking and unreliable as it is in many ways) simply irrelevant. Indian engineers have invented a battery-powered, ultra-low-cost refrigerator resistant to power cuts; an automatic teller machine for rural areas; and even a flour mill powered by a scooter. People in the West, with its constant access to electricity, have little motivation to pursue such innovations. The Indian mobile phone industry is the poster child for leapfrogging over infrastructural constraints. A limited fixed-line infrastructure created an opportunity for mobile phones to reach many more people. Mobile telephony is also relatively cheap, sharable, and easily repaired. And thus, a new frontier of global innovation opened in India. …… 

The Indian mission to Mars which launched yesterday is another example of frugal engineering at work.

Hindustan Times:

India’s successful Mangalyaan launch is as much a financial accomplishment as a technical milestone. The entire Mars mission has cost the Indian Space Research Organisation a mere around Rs. 450 crore ($75 million) and took 15 months to put together. Much of the Martian price tag is for ground stations and relay upgrades that will be used for other Isro projects. The actual satellite costs a mere $25 million ( Rs. 153 crore), says Pallav Bagla of Science magazine. Comparison: Nasa’s similar MAVEN Mars project will cost 10 times more and will take three times longer.

Isro is widely cited as an example of “frugal engineering” …..  A US state department scientific adviser once said that Isro had reduced satellite assembly costs to a tenth of Nasa’s.

Isro’s accomplishments are remarkable given its tiny budget: $700 million ( Rs. 4,270 crore) in 2012-13. Despite a space programme whose financial base is the ninth largest, India is generally rated the world’s number six space power.

Of this, only 7% is allotted for planetary exploration. Isro’s prime directive has and continues to be the finding of technical means to support socio-economic goals such as education, medicine, water and disaster management.

Isro also defrays government support through a commercial arm, Antrix. Through the sale of satellite imagery, satellite launches and so on, Antrix earned a pre-tax Rs. 2 billion in 2010 alone. …..


%d bloggers like this: