Posts Tagged ‘PSLV’

ISRO successfully launches 3rd of the 7-satellite IRNSS

October 16, 2014

After the successful arrival of the MOM in Mars Orbit, ISRO has taken the more mundane step of putting the 3rd of 7 satellites for India’s satellite navigation system into place.

ISRO’s Polar Satellite Launch Vehicle, PSLV-C26, successfully launched IRNSS-1C, the third satellite in the Indian Regional Navigation Satellite System (IRNSS), in the early morning hours of today (October 16, 2014) at 0132 hours IST from Satish Dhawan Space Centre, Sriharikota. This is the twenty seventh consecutively successful mission of PSLV. The ‘XL’ configuration of PSLV was used for this mission. Previously, the same configuration of the vehicle was successfully used six times.

The Indian Regional Navigation Satellite System (IRNSS) is India’s 7-satellite global positioning system. It is similar to the GPS of the US, Russia’s Glonass , Europe’s Galileo  China’s Beidou and the Japanese Quasi Zenith Satellite System. The IRNSS is autonomous and under the control of the Indian Government. In addition to providing civilian navigation services (Standard Positioning Service – SPS) in a region extending 1500 km beyond the country’s borders, the IRNSS will also provide encrypted military and strategic services (Restricted Services – RS) independent of foreign governments. The positioning accuracy is designed to be 20 m in the primary service area. Each satellite is designed for a life of 10 years.

The IRNSS program received government approval in 2006 and is planned to be fully deployed by the end of 2015. The budgeted cost is 14.2 billion INR (about $240 million) and must count as another example of ISRO’s “frugal engineering”. The cost includes for two stand-by satellites on the ground making nine included in the budget. As a comparison Europe’s Galileo navigational system comprises 27 satellites and is expected to cost about 50 times more at about €10 billion ($13 billion).

IRNSS - ISRO

IRNSS – ISRO

The 7 satellite system consists of 4 satellites as two pairs of geosynchronous satellites and 3 in geostationary orbit. The first two satellites in the series, IRNSS 1a and IRNSS 1b formed the first geosynchronous pair and were launched from Sriharikota on July 1st, 2013 and April 4th this year. respectively. The IRNSS-1c launched this morning is the first geostationary satellite and carries two payloads, one for transmitting navigation service signals to users and another consisting of a C-band transponder to facilitate Cube Retro Reflectors for laser ranging. It is the central satellite of the seven satellite configuration. The satellites launched so far are individually operational but the system will become operational only with the next launch of a geostationary satellite. (The system needs one geosynchronous pair, the central satellite and one more geostationary satellite to reach the threshold conditions to become operational). All seven satellites are planned to be in place and operational by the end of 2015.

IRNSS Architecture - ISRO

IRNSS Architecture – ISRO

NasaSpaceflight:

Based on ISRO’s I-1K satellite bus, each IRNSS satellite has a mass at launch of 1,425 kilograms (3,142 lb). Unfuelled, the spacecraft has a mass of only 600 kilograms (1,323 lb), with the remaining 825 kilograms (1,819 lb) being taken up by propellant for their apogee motors and manoeuvring engines.

The spacecraft are designed for ten years’ operational service. Generating 1.6 kilowatts of power through twin solar arrays, the satellites broadcast L5 and S band navigation signals. C-band transponders and retroreflectors are used for range calibration.

Each satellite is fitted with a single liquid apogee motor producing 440 newtons (99 pounds-force) of thrust. Three-axis control is provided by reaction wheels, magnetorquers and twelve reaction control thrusters.

The apogee motor is tasked with propelling the satellite from its initial deployment orbit into the final geostationary orbit, while the remaining thrusters will be used to manoeuvre and orient the spacecraft once it is in orbit.

IRNSS-1C is the first geostationary satellite in the IRNSS system. Planned for operation at a longitude of 83 degrees East, it will operate at the middle station of the constellation.

Two more geostationary satellites will be added; at longitudes of 34 and 132 degrees, while the remaining four spacecraft will operate in inclined geosynchronous orbits to increase the angle of separation between signals. Two of the inclined satellites are already in orbit; IRNSS-1A and 1B operate at a longitude of 55 degrees East. A second pair will be located at 111 degrees East next year.

The two satellites already in orbit were deployed in July 2013 and April 2014, both riding PSLV rockets to orbit from the Satish Dhawan Space Centre

The PSLV launch vehicle was introduced in 1993 and this is its 28th successful use (27th consecutive successful use). Today’s launch used the PSLV-XL configuration – the most powerful version of the PSLV currently flying – which makes use of six PS0M-XL boosters containing S-12 solid rocket motors. Four of these motors are lit when the rocket leaves its launch pad, with the remaining two lit during the early stages of its ascent.

 

Advertisements

Frugal engineering for India’s Mars mission

November 6, 2013

India has been struggling to bridge the gap to more developed nations without necessarily having to follow exactly the same path as that followed by other nations. Especially to achieve the development objectives in less time than it has taken those who did it first. Doing more with less is the name of the game and “Frugal engineering” (or “frugal innovation”) is defining a new paradigm for development.

There may perhaps not be any better example of the dictum that necessity is the mother of invention than can be found in India. Whether it is a refrigerator, ECG device or an automobile, Indian engineers have brought innovative products to market by designing them outside-in. …….

It may seem a contradiction, but some infrastructure gaps in India have positively affected Indian innovation: they have forced entrepreneurs and companies to adopt technologies that make relying on existing infrastructure (creaking and unreliable as it is in many ways) simply irrelevant. Indian engineers have invented a battery-powered, ultra-low-cost refrigerator resistant to power cuts; an automatic teller machine for rural areas; and even a flour mill powered by a scooter. People in the West, with its constant access to electricity, have little motivation to pursue such innovations. The Indian mobile phone industry is the poster child for leapfrogging over infrastructural constraints. A limited fixed-line infrastructure created an opportunity for mobile phones to reach many more people. Mobile telephony is also relatively cheap, sharable, and easily repaired. And thus, a new frontier of global innovation opened in India. …… 

The Indian mission to Mars which launched yesterday is another example of frugal engineering at work.

Hindustan Times:

India’s successful Mangalyaan launch is as much a financial accomplishment as a technical milestone. The entire Mars mission has cost the Indian Space Research Organisation a mere around Rs. 450 crore ($75 million) and took 15 months to put together. Much of the Martian price tag is for ground stations and relay upgrades that will be used for other Isro projects. The actual satellite costs a mere $25 million ( Rs. 153 crore), says Pallav Bagla of Science magazine. Comparison: Nasa’s similar MAVEN Mars project will cost 10 times more and will take three times longer.

Isro is widely cited as an example of “frugal engineering” …..  A US state department scientific adviser once said that Isro had reduced satellite assembly costs to a tenth of Nasa’s.

Isro’s accomplishments are remarkable given its tiny budget: $700 million ( Rs. 4,270 crore) in 2012-13. Despite a space programme whose financial base is the ninth largest, India is generally rated the world’s number six space power.

Of this, only 7% is allotted for planetary exploration. Isro’s prime directive has and continues to be the finding of technical means to support socio-economic goals such as education, medicine, water and disaster management.

Isro also defrays government support through a commercial arm, Antrix. Through the sale of satellite imagery, satellite launches and so on, Antrix earned a pre-tax Rs. 2 billion in 2010 alone. …..

India’s 100th space mission puts two satellites into orbit

September 10, 2012

The Indian space programme started 50 years ago and the Indian Space Research Organisation (ISRO) has now achieved its 100th mission. Of course there is a debate on whether this is money is well spent considering the many needs in the country. My own view is that it is. The long term development of technology, I think, takes precedence over some short term benefits if the money was spent elsewhere.

Daily Mail:The Indian space programme reached yet another milestone with the successful launch of the Polar Satellite Launch Vehicle (PSLV) carrying two foreign satellites from the Satish Dhawan spaceport, Sriharikota, in Andhra Pradesh on Sunday morning. 

This is the Indian Space Research Organisation’s (ISRO) 100th mission, which began with an experimental satellite called Aryabhata launched by a Russian rocket in April 1975. 

Incidentally, 2012 also marks 50 years of the start of the programme beginning with sounding rockets launched from Thumba in Kerala. …… 

The launch was delayed by two minutes – from 9.51 am to 9.53 am – after a safety analysis of data relating to space debris and asteroids. 

ISRO officials said this was a normal precaution taken to ensure safe journey for satellites to avoid any collision with space objects. 

Both satellites have been placed into their orbits precisely.

The count of 100 space missions includes 63 Indian satellites, 36 launch vehicle missions and one reusable space recovery mission.

The Hindu: 

Prime Minister Manmohan Singh on Sunday congratulated scientists of the Indian Space Research Organisation (ISRO) for the successful launch of the Polar Satellite Launch Vehicle C-21 from Sriharikota.

Expressing happiness at witnessing the launch, Dr. Singh complimented the Department of Space and the ISRO fraternity on this “spectacular success.”

“As ISRO’s 100th space mission, today’s [Sunday’s] launch is a milestone in our nation’s space capabilities,” he told a gathering of scientists that included the former ISRO chiefs.

Dr. Singh also congratulated EADS Astrium of France and the Osaka Institute of Technology of Japan on the successful launch of their satellites. This achievement was a testimony to the commercial competitiveness of the Indian space industry and a tribute to Indian innovation and ingenuity.

He noted that the year also marked the 50th anniversary of the commencement of India’s space programme and acknowledged the presence of many stalwarts of the earlier space programmes, including Project Directors of space missions. “Given the string of successes since then, we often forget how challenging space technology is and what a relatively new field it continues to be.” …..


%d bloggers like this: