Posts Tagged ‘Henrik Svensmark’

The sun, the clouds and the climate

September 5, 2013

The Svensmark theory is that variations in the Sun’s electromagnetic  behaviour leads to varaiations of the cosmic ray flux reaching earth which in turn impacts cloud formation on earth and that connects to global warming or cooling.  A more active sun leads to fewer cosmic rays which gives fewer clouds and more warming on earth.

Graphic from Jonova

The CLOUD experiments at CERN have shown that cosmic rays can in fact lead to cloud formation. Now Svensmark and his colleagues have published further evidence from the SKY2 experiments which confirm the connection.

H. Svensmark, Martin B. Enghoff and Jens Olaf Pepke Pedersen, Response of cloud condensation nuclei (>50 nm) to changes in ion-nucleation,   Physics Letters A 377 (2013) 2343–2347,

Full paper is available here: svensmark et al 2013

Abstract: In experiments where ultraviolet light produces aerosols from trace amounts of ozone, sulfur dioxide, and water vapor, the relative increase in aerosols produced by ionization by gamma sources is constant from nucleation to diameters larger than 50 nm, appropriate for cloud condensation nuclei. This result contradicts both ion-free control experiments and also theoretical models that predict a decline in the response at larger particle sizes. This unpredicted experimental finding points to a process not included in current theoretical models, possibly an ion-induced formation of sulfuric acid in small clusters.

The Technical University of Denmark has issued a Press Release:

Danish experiment suggests unexpected magic by cosmic rays in cloud formation

Researchers in the Technical University of Denmark (DTU) are hard on the trail of a previously unknown molecular process that helps commonplace clouds to form. Tests in a large and highly instrumented reaction chamber in Lyngby, called SKY2, demonstrate that an existing chemical theory is misleading.

Back in 1996 Danish physicists suggested that cosmic rays, energetic particles from space, are important in the formation of clouds. Since then, experiments in Copenhagen and elsewhere have demonstrated that cosmic rays actually help small clusters of molecules to form. But the cosmic-ray/cloud hypothesis seemed to run into a problem when numerical simulations of the prevailing chemical theory pointed to a failure of growth. 

Fortunately the chemical theory could also be tested experimentally, as was done with SKY2, the chamber of which holds 8 cubic metres of air and traces of other gases. One series of experiments confirmed the unfavourable prediction that the new clusters would fail to grow sufficiently to be influential for clouds. But another series of experiments, using ionizing rays, gave a very different result, as can be seen in the accompanying figure. 

The reactions going on in the air over our heads mostly involve commonplace molecules. During daylight hours, ultraviolet rays from the Sun encourage sulphur dioxide to react with ozone and water vapour to make sulphuric acid. The clusters of interest for cloud formation consist mainly of sulphuric acid and water molecules clumped together in very large numbers and they grow with the aid of other molecules.

Atmospheric chemists have assumed that when the clusters have gathered up the day’s yield, they stop growing, and only a small fraction can become large enough to be meteorologically relevant. Yet in the SKY2 experiment, with natural cosmic rays and gamma-rays keeping the air in the chamber ionized, no such interruption occurs. This result suggests that another chemical process seems to be supplying the extra molecules needed to keep the clusters growing. 

“The result boosts our theory that cosmic rays coming from the Galaxy are directly involved in the Earth’s weather and climate,” says Henrik Svensmark, lead author of the new report. “In experiments over many years, we have shown that ionizing rays help to form small molecular clusters. Critics have argued that the clusters cannot grow large enough to affect cloud formation significantly. But our current research, of which the reported SKY2 experiment forms just one part, contradicts their conventional view. Now we want to close in on the details of the unexpected chemistry occurring in the air, at the end of the long journey that brought the cosmic rays here from exploded stars.”

Simulating what could happen in the atmosphere, the DTU’s SKY2 experiment shows molecular clusters (red dots) failing to grow enough to provide significant numbers of “cloud condensation nuclei” (CCN) of more than 50 nanometres in diameter. This is what existing theories predict. But when the air in the chamber is exposed to ionizing rays that simulate the effect of cosmic rays, the clusters (blue dots) grow much more vigorously to the sizes suitable for helping water droplets to form and make clouds. (A nanometre is a millionth of a millimetre.)

Advertisements

Cosmic rays could indeed seed clouds

March 2, 2012

Sticking to science – and experimental science at that – while ignoring the politicisation and religious overtones of “climate science”, Henrik Svensmark continues to painstakingly build his cosmic theory of climate change.

Supernova remnants  cosmic rays  solar modulation of cosmic rays variations in cluster and sulphuric acid production  variation in cloud condensation nuclei  variation in low cloud formation  variation in climate.

When experiments or observations show that model predictions are wrong it is time to ditch the falsified hypotheses  and to build new hypotheses.  Far too often in ” global warming science” the hypotheses and the models become “incontrovertible dogma” and rather than test the falsifiability of the hypothesis with observations and experiment, data are fudged to fit the dogma. Svensmark’s approach is an oasis of proper science in a desert of pseudo-science.

Nigel Calder reports:

(more…)

Net effect of clouds on climate is strongly cooling and not of warming

September 21, 2011

During daytime clouds shadow the earth from the sun’s radiation and have a cooling effect while at night they act as a blanket and decrease the radiation away from earth into space. For anybody who has desperately sought the shade on a warm day or has observed the absence of frost after a cloudy night, this might seem a pretty obvious and a rather trivial statement.

The alarmists’ view of global warming assumes that the net effect of clouds is to warm the earth’s climate and that it is one of the “positive feedbacks” for warming. But a new paper in September’s Meteorological Applications severely undermines these assumptions by showing that this feedback is strongly negative. To put the magnitude of this cooling effect into perspective, the net cooling effect of clouds is put at -21W/sq.m while the much-touted effect of a doubling of carbon dioxide concentration in the atmosphere is supposed to be only +1.2W/sq.m.

When this is coupled to the recent support for Svensmark’s hypothesis  on solar effects for cloud formation from the CERN cloud experiment, and the lack of warming over the last decade  while carbon dioxide has been increasing, it only emphasises that:

  1. the science of how climate varies is a long way from being settled, and
  2. the magnitude of carbon dioxide effects on climate are extremely small, and
  3. the effect of man-made emissions on the atmospheric concentration of carbon dioxide is miniscule

Whether directly by incoming radiation or indirectly by the formation of clouds or through the transport of heat by the oceans and the winds, it is the sun which is the predominant forcing. Climate models which ignore solar effects and do not have the sun at their centre are fatally flawed.

Allan, R. (2011) Combining satellite data and models to estimate cloud radiative effect at the surface and in the atmosphere, Meteorological Applications, 18 (3). pp. 324-333, ISSN 1469-8080, DOI: 10.1002/met.285

Abstract: Satellite measurements and numerical forecast model reanalysis data are used to compute an updated estimate of the cloud radiative effect on the global multi-annual mean radiative energy budget of the atmosphere and surface. The cloud radiative cooling effect through reflection of short wave radiation dominates over the long wave heating effect, resulting in a net cooling of the climate system of − 21 Wm−2. The short wave radiative effect of cloud is primarily manifest as a reduction in the solar radiation absorbed at the surface of − 53 Wm−2. Clouds impact long wave radiation by heating the moist tropical atmosphere (up to around 40 Wm−2 for global annual means) while enhancing the radiative cooling of the atmosphere over other regions, in particular higher latitudes and sub-tropical marine stratocumulus regimes. While clouds act to cool the climate system during the daytime, the cloud greenhouse effect heats the climate system at night. The influence of cloud radiative effect on determining cloud feedbacks and changes in the water cycle are discussed. 

“It’s the Sun, stupid” > Svensmark vindicated: CERN shows cosmic rays do influence cloud formation

August 25, 2011

The much awaited results from the CLOUD experiments at CERN have now been published in Nature and show that cosmic rays can influence cloud formation – as Henrik Svensmark has hypothesised. This mechanism – ultimately dependent upon the sun – is far more credible as an explanation of the climate variations seen in recent times than dubious computer models based on implausible forcings due to carbon dioxide in the atmosphere.

Cloud formation may be linked to cosmic rays Kirkby, J. et alNature 476, 429-433 (2011).

Nigel Calder (via GWPF) writes:

Long-anticipated results of the CLOUD experiment at CERN in Geneva appear in tomorrow’s issue of the journal Nature (25 August). The Director General of CERN stirred controversy last month, by saying that the CLOUD team’s report should be politically correct about climate change (see my 17 July post below). The implication was that they should on no account endorse the Danish heresy – Henrik Svensmark’s hypothesis that most of the global warming of the 20th Century can be explained by the reduction in cosmic rays due to livelier solar activity, resulting in less low cloud cover and warmer surface temperatures.

Willy-nilly the results speak for themselves, and it’s no wonder the Director General was fretful.

Henrik Svensmark (born 1958) is a physicist at the Danish National Space Center in Copenhagen who studies the effects of cosmic rays on cloud formation. His work presents hypotheses about solar activity as an indirect cause of global warming; his research has suggested a possible link through the interaction of the solar wind and cosmic rays. His conclusions have been controversial as the prevailing scientific opinion on climate change considers solar activity unlikely to be a major contributor to recent warming, though it is thought to be the primary driver of many earlier changes in climate.

I cannot do any better than reproduce Nigel Calder’s explanation of the CERN experimental results:

Jasper Kirkby of CERN and his 62 co-authors, from 17 institutes in Europe and the USA, announce big effects of pions from an accelerator, which simulate the cosmic rays and ionize the air in the experimental chamber. The pions strongly promote the formation of clusters of sulphuric acid and water molecules – aerosols of the kind that may grow into cloud condensation nuclei on which cloud droplets form. What’s more, there’s a very important clarification of the chemistry involved.

(more…)


%d bloggers like this: